

STAGE 1 AND STAGE 2 ENVIRONMENTAL SITE INVESTIGATION

677 - 687 CANTERBURY ROAD, BELMORE NSW

PREPARED FOR WM RITCHIE PROPERTIES PTY LTD & BELMORE 677 PTY LTD REPORT ID: E13017BEL-R01D

Date: 20 March 2014 **Revision No.**: 0.1

Client:

WM Ritchie Properties Pty Ltd & Belmore 677 Pty Ltd C/- City Alliance Property Pty Ltd PO Box 124 Surry Hills NSW 2010

Sing

Author: S. McCormack Field Engineer / Scientists: S. McCormack

geotechnical • environmental • landfills

TABLE OF CONTENTS

EXECU	TIVE SUMMARY	5
1	PROJECT INFORMATION	10
1.1	INTRODUCTION	10
1.2	OBJECTIVES	11
1.3	SCOPE OF WORKS	11
2	SITE IDENTIFICATION	13
3	SITE HISTORY	14
3.1	HISTORICAL AERIAL PHOTOGRAPHS	14
3.2	HISTORICAL TITLE INFORMATION	17
3.3	PROPERTY INFORMATION FROM SITE OCCUPIERS	18
3.4	CANTERBURY MUNICIPAL COUNCIL RECORDS	18
3.5	WorkCover NSW	19
3.6	CONTAMINATED LAND DATABASE	19
3.7	SUMMARY OF SITE HISTORY INFORMATION	20
4	SITE CONDITION AND SURROUNDING ENVIRONMENT	21
4.1	SITE IDENTIFICATION AND DESCRIPTION	21
4.1.1	Tanks and Associated Services	24
4.1.2	Fill	24
4.1.3	Odours and Staining	24
4.2	TOPOGRAPHY	24
4.3	PROPOSED LAND-USE	24
4.4	REGIONAL GEOLOGY AND SOILS	25
4.5	REGIONAL HYDROGEOLOGY	25
5	CONCEPTUAL SITE MODEL	26
6	SAMPLING AND ANALYSIS PROGRAM	29
6.1	SAMPLING PROGRAM	29
6.1.1	Borehole Drilling Operations and Logging	29
6.1.2	Subsurface Conditions	32
6.1.3	Soil Sampling	33
6.1.4	Field Screening of Soil Samples	34
6.1.5	Monitoring Well Installation	34
6.1.6	Groundwater Monitoring and Sampling	35
6.2	ANALYTICAL PROGRAM	37

7	DATA QUALITY ASSESSMENT	41
8	Assessment Criteria	42
8.1	SOIL SAMPLES	42
8.1.1	Ecological Investigation / Screening Levels	42
8.1.2	Health Investigation Levels	44
8.2	WATER SAMPLES	47
9	ANALYTICAL RESULTS	50
9.1	SOIL SAMPLES	50
9.1.1	Metals	50
9.1.2	TRH and BTEX	51
9.1.3	PAHs	52
9.1.4	OCPs and PCBs	52
9.1.5	Asbestos	52
9.2	WATER FIELD PARAMETERS	61
9.3	WATER ANALYTICAL RESULTS	63
9.3.1	Metals	63
9.3.2	TRH and BTEX	63
9.3.3	PAHs	63
9.3.4	VOCs (including BTEX)	63
10	SITE CHARACTERISATION	65
10.1	SITE HISTORY AND POTENTIAL FOR CONTAMINATION	65
10.2	SOIL ASSESSMENT	66
10.2.1	Waste Classification Estimates	68
10.3	GROUNDWATER ASSESSMENT	69
11	CONCLUSION	70
13	GENERAL LIMITATIONS OF THIS REPORT	72
14	References	73

Stage 1 and Stage 2 Environmental Site Investigation 677 - 687 Canterbury Road, Belmore NSW

FIGURES

Figure 1:	Site location map
Figure 2:	Site details
Figure 3:	Site plan (site survey)
Figure 4:	Site plan (Aerial photography)
Figure 5:	Site plan of service station area

TABLES

Table 1:	Summary of Potential Contamination
Table 2:	Summary of Borehole Information
Table 3:	Summary of Subsurface Conditions
Table 4:	Summary of the Soil Sampling and Analysis Program
Table 5:	Summary of the Groundwater Sampling and Analysis Program
Table 6:	Soil Site Assessment Criteria (SAC)
Table 7:	Groundwater Investigation Levels (GILs)
Table 8:	Soil Analytical Results
Table 9:	Groundwater Field Data Results
Table 10:	Groundwater Analytical Results

APPENDICES

- Appendix A: Site Survey and Proposed Development Plans
- Appendix B: Historical Aerial Photographs
- Appendix C: Historical Title Documentation
- Appendix D: Sale Contract provided by J. Robins & Sons Pty Ltd
- Appendix E: WorkCover NSW search results
- Appendix F: NSW EPA Database Information
- Appendix G: Data Quality Objectives
- Appendix H: Borehole Logs
- Appendix I: Quality Assurance Assessment Report
- Appendix J: Calibration Certificates
- Appendix K: Field Data Sheets
- Appendix L: Laboratory Reports and Certificates

EXECUTIVE SUMMARY

Geo-Environmental Engineering Pty Ltd (GEE) was commissioned by City Alliance Property Pty Ltd, on behalf of WM Ritchie Properties Pty Ltd & Belmore 677 Pty Ltd, to undertake a detailed Environmental Site Assessment (ESA) at 677 - 687 Canterbury Road, Belmore, NSW (herein referred to as the 'site').

The site covers a combined area of approximately 6,900m² and the following allotments:

- ♦ Lots 1 & 2 in DP 533919
- ♦ Lots A & B in DP952115, and
- ♦ Lot 91 in DP3862.

The investigation was required to support a Development Application with Canterbury Municipal Council (Council) which relates to the proposed demolition of existing structures and the construction of a multi-storey, mixed-use, development with basement carparking. The exact details of the proposed development, including the number of levels above and below ground, have not been finalised. However, it is expected that the ground floor will comprise commercial land-use with residential apartments above. Additionally, the basement level(s) are expected to cover the majority of the site.

The ESA was required to identify the potential for contamination from past and present activities, and possible constraints on future site development. In this regard, GEE has completed a *Stage 1 - Preliminary Site Investigation* (Stage 1 - PSI) and Stage *2 – Detailed Site Investigation* (Stage 2 – DSI).

The objective of the Stage 1 - PSI was to assess the likelihood of site contamination which may have resulted from past and present activities on the site, and the likelihood of contaminating activities on adjoining land, having an impact on the site. The objective of the Stage 2 – DSI was to characterise actual soil and groundwater conditions across the site and whether they have been contaminated from past and/or present activities undertaken on and/or adjacent to the site, which would impact on the proposed development.

Additionally, considering that the site is to be excavated to facilitate the construction of a basement, the client requested that an estimate of the waste classification for the fill and natural soil be provided.

<u>Site History</u>

A review of the historical information indicates that the site has been operating as a shoe factory since approximately 1979. Before 1979 the majority of the site (*i,e*. lots 91, 1 and 2) was occupied by a clothing factory which commenced circa 1937.

Lot A, along the western boundary fronting Drummond Street, appears to have been used as a residential property since at least 1916 and this land-use has continued up until the time of this investigation. The final allotment which makes up the site (Lot B - in the south-western corner of the site) appeared to be a motor vehicle workshop and service station prior to being purchased by J. Robins & Sons Pty Ltd in circa 1980. The garage and/or service station was likely operated between approximately 1929 when Motor & Engineering Works Ltd purchased the allotment. The allotment was then owned by various individuals listed as being a '*garage proprietor'* before Caltex Oil (Australia) Pty Ltd owned the allotment between 1953 and 1979.

In summary, the former service station represented the primary potential for contamination (both soil and groundwater).

Soil Conditions

Soil conditions across the site were assessed at twenty eight borehole locations (BH1 to BH28) positioned across the site and targeting areas of potential contamination (in particular the service station in the south-western corner). The number of boreholes exceeds the minimum number of sampling points required for adequate site characterisation as defined by the EPA NSW and Australian Standards.

The subsurface conditions encountered during the field investigations comprised a layer of fill material which was underlain by a natural clay soil which graded into shale bedrock. The depth of filling was typically between 0.15m and 1.3m bgs, although deeper sand fill was present in the vicinity of the USTs in the southwestern corner of the site. The depth to shale bedrock ranged from 0.75m to 2.2m bgs.

During the drilling of boreholes, there were no unusual odours (that could be potentially associated with contamination) noted. Additionally, no potentially Asbestos Containing Materials (ACM) was observed below ground during sampling

and logging. Permanent groundwater was not encountered during the drilling of each borehole, however, groundwater seepage did eventually occur in the monitoring wells installed within bores BH2, BH3, BH4, BH10, BH14 and BH20.

GEE submitted a total of 69 soil samples from the 28 boreholes to Envirolab for NATA accredited laboratory analysis of metals (arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc), TRH, BTEX, PAHs, OCPs, PCBs and asbestos and the analytical results were compared against relevant set of SAC appropriate for the proposed residential land-use with minimal access to soil.

In summary, the only analytes to exceed the health and/or ecological SAC was:

- Lead within the fill layer at BH26 (sample SM060114-93 6000mg/kg) which exceeded the ecological and health based SAC. BH26 was 17m from the eastern boundary and 15m from the northern boundary of the factory, and
- ◊ B(a)P within the fill at BH4 (sample SM161213-22 1.3mg/kg) which exceeded the ecological SAC of 0.7mg/kg. BH4 was 2m from the western boundary and 4m from the southern boundary.

The lead concentration in sample SM060114-93 was re-analysed three times using new sub-samples from the same sample jar and the results were 1700mg/kg, 2400mg/kg and 3900mg/kg which equates to an average lead concentration of 3500mg/kg. The average concentration of lead was more than 2.5 times the health and ecological SAC and therefore is considered to be a 'hot-spot' of contamination which will need to be remediated and/or managed as part of the proposed redevelopment works.

The concentration of B(a)P in sample SM161213-22 only marginally exceeded the ecological SAC. The ecological SAC for B(a)P is a screening level, above which will require further evaluation and consideration. Considering the urban environment in which the site lies, the existing land-use and the extent and type of the proposed development (particularly the fact that the site will be excavated to form a basement level), GEE considers that the elevated B(a)P concentration does not require specific remediation and can be managed appropriately as part of the proposed redevelopment work. This should include provision of a waste classification for the fill layer and disposal to an appropriately licenced landfill facility.

With respect to future earthworks proposed as part of the development, the following waste classifications are <u>likely</u> to apply to the fill and natural soil profile across the site:

- Fill layer in the vicinity of BH23 which is impacted with lead up to 6000mg/kg. This portion of fill is expected to have a waste classification of 'Restricted Solid Waste' and GEE estimates a volume of this waste of approximately 100m³.
- The remaining portion of the fill layer is likely to be classified as General solid waste (non-putrescible).
- The natural soil profile (including shale bedrock) is free of any contamination and is likely to have a classification of virgin excavated natural material (VENM) which is a sub-class of general solid waste (non-putrescible) which and can be re-used, rather than be disposed at a landfill. To ensure VENM classification the natural soil / bedrock must not be mixed with any fill material or other deleterious material. GEE recommends that all remediation work including removal of any USTs, the lead impacted soil at BH26 and remaining fill layer be removed from site before excavation and disposal of VENM.

The above waste classifications are only estimates at this stage and further testing of the fill layer will be necessary including leachate analysis using the Toxicity Characteristic Leaching Procedure (TCLP).

Groundwater Conditions

Groundwater conditions beneath the site were assessed using six monitoring wells installed within boreholes BH2, BH3, BH4, BH10, BH14 and BH20. Water within the wells was generally neutral in pH and high in conductivity indicating brackish / saline water. The standing (or stabilised) water level was recorded in each well prior to purging and sampling and when compared to the surface elevations it was determined that groundwater is flowing in a north-westerly direction which is commensurate with the topography.

To assess the presence of contamination within the groundwater beneath the site, water from each wells was submitted to Envirolab for NATA accredited analysis of dissolved metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury), TRH, BTEX, PAHs and VOCs. The analytical results were then compared against a set of groundwater investigation Levels (GILs) considered appropriate for the environmental setting of the site.

The concentrations of arsenic, cadmium, chromium, copper, lead, mercury, TRH, BTEX and PAHs conformed to the adopted GILs, while the concentrations of nickel and zinc in some wells exceeded the SAC. The metal exceedances are not considered to be significant because:

- The groundwater from the site was collected from a stratigraphy comprising shale and according Hem (1989 – reference 13), the concentrations of nickel and zinc are commensurate with naturally occurring background concentrations.
- The concentrations are consistent across the site (including the up-hydraulic gradient wells).
- No source of metal contamination was identified in the fill and natural soils across the site.
- ♦ The concentrations detected are commensurate with metal concentrations within the groundwater across the Sydney region.

1 PROJECT INFORMATION

1.1 INTRODUCTION

Geo-Environmental Engineering Pty Ltd (GEE) was commissioned by City Alliance Property Pty Ltd, on behalf of WM Ritchie Properties Pty Ltd & Belmore 677 Pty Ltd, to undertake a detailed Environmental Site Assessment (ESA) at 677 - 687 Canterbury Road, Belmore, NSW (herein referred to as the 'site').

The site covers a combined area of approximately 6,900m² and the following allotments:

- ♦ Lots 1 & 2 in DP 533919
- ♦ Lots A & B in DP952115, and
- ♦ Lot 91 in DP3862.

A site location map is provided as **Figure 1**, while the allotment boundaries which make up the site are shown on **Figure 2**. A detailed site survey is provided for reference in **Appendix A**.

The investigation was required to support a Development Application with Canterbury Municipal Council (Council) which relates to the proposed demolition of existing structures and the construction of a multi-storey, mixed-use, development with basement carparking. The exact details of the proposed development, including the number of levels above and below ground, have not been finalised. However, it is expected that the ground floor will comprise commercial land-use with residential apartments above. Additionally, the basement level(s) are expected to cover the majority of the site.

The ESA was required to identify the potential for contamination from past and present activities, and possible constraints on future site development. In this regard, GEE has completed a *Stage 1 - Preliminary Site Investigation* (Stage 1 - PSI) and Stage *2 – Detailed Site Investigation* (Stage 2 – DSI) in accordance with the NSW Environment Protection Authority (NSW EPA) in the *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (reference 1) and NEPM (2013) Schedule B(2) *Guideline on Site Characterisation* (Reference 2).

The investigation was conducted in accordance with the approved GEE proposal dated 22 July 2013 and with consideration to relevant guidelines made or

approved by the NSW Environmental Protection Authority (EPA) part of the NSW Office of Environment and Heritage (OEH), State Environmental Planning Policy No.55 – *Remediation of Land* (SEPP 55 – reference 3) and relevant Australian Standards.

Finally, the preliminary ESA was carried out by GEE in conjunction with a preliminary geotechnical investigation, the results of which are reported separately.

1.2 OBJECTIVES

The objective of the Stage 1 - PSI was to assess the likelihood of site contamination which may have resulted from past and present activities on the site, and the likelihood of contaminating activities on adjoining land, having an impact on the site. The objective of the Stage 2 – DSI was to characterise actual soil and groundwater conditions across the site and whether they have been contaminated from past and/or present activities undertaken on and/or adjacent to the site, which would impact on the proposed development.

Additionally, considering that the site is to be excavated to facilitate the construction of a basement, the client requested that an estimate of the waste classification for the fill and natural soil be provided.

1.3 SCOPE OF WORKS

The scope of works completed by GEE, to achieve the above objectives, is provided below:

- A review of the environmental and physical setting in which the site lies, including geology, hydrogeology and topography,
- A review of the history of the site using available records including historical land titles and historical aerial photographs,
- ♦ A detailed site inspection for potential sources of contamination,
- ♦ Field investigations including:
 - \circ $\;$ The drilling of 28 boreholes across accessible areas of the site, and
 - $_{\odot}$ The installation of groundwater monitoring wells within 6 of the 28 boreholes.
 - \circ $\;$ Sampling of soil and groundwater from the boreholes and wells.

- Laboratory analysis of selected soil and groundwater samples for a broad suite of potential contaminants, and
- Preparation of this report including the comparison of the laboratory analytical results against relevant Office of Environment and Heritage (OEH)¹ endorsed guidelines.

¹ The OEH incorporates the NSW Environment Protection Authority (EPA) and was formerly known as the NSW Department of Environment and Climate Change and Water (DECCW), the NSW Department of

2 SITE IDENTIFICATION

A summary of the site location details is provided below, while a site location map is provided as **Figure 1**:

Street Address:	677 - 687 Canterbury Road, Belmore NSW
Legal Description:	Lots 1 & 2 in DP 533919, Lots A & B in DP952115 and Lot 91 in DP3862 (refer to Appendix A)
Coordinates (MGA 56):	323700 mE, 6244780 mN
Local Government Area:	Canterbury Municipal Council
Site Area:	Approximately 6,900m ²
Current Owner:	WM Ritchie Properties Pty Ltd
Current Zoning:	B6 – Enterprise Corridor & R3 Medium density residential ²
Current Use:	J. Robins & Sons Pty Ltd – Manufacture of shoes
Proposed Zoning:	GEE understands that the proposed development will be within the requirements of the current zoning ²
Proposed Use:	Mixed Commercial and Residential

 $^{^2}$ Canterbury Local Environment Plan 2012 – Land Zoning Map – Sheet LZN_004

3 SITE HISTORY

The history of the site was researched to provide an understanding of past and present site activities which in turn may indicate sources and areas of potential contamination as well as potential chemicals of concern.

Information obtained and reviewed included:

- Historical aerial photographs dating back to 1930, as supplied by the NSW Land and Property Information or online sources such as Google Earth (Appendix B).
- Historical title information, dating back to 1905, obtained from the Land and Property Information Department of NSW (Appendix C).
- Property information held by the current occupiers of the site (J. Robins & Sons Pty Ltd) (Appendix D).
- ◊ Council records of past development applications and approvals.
- ◊ A search of dangerous good licences held with WorkCover NSW which often includes underground fuel storage tanks (USTs) (**Appendix E**).
- A search of the contaminated land database, which is available on the OEH website, was conducted which reveals if there has been any past records of written notices issued on the site by OEH under the Contaminated Land Management Act 1997 (CLM Act), including preliminary investigation orders. Additionally, the search can reveal if the site has ever been notified to the OEH under Section 60 duty to report contaminated sites, of the CLM Act (**Appendix F**).

3.1 HISTORICAL AERIAL PHOTOGRAPHS

Historical aerial photographs were examined for the years 1930, 1951, 1961, 1970. 1978, 1986, 1998, 2001, 2003, 2007, 2009 and 2011. A description of the site from each photograph is provided below while a copy of the aerial photography is provided in **Appendix B**:

1930 The earliest available photograph shows that the site was partially developed. Lots 1 and 2 at the eastern end of the site were occupied by at least two buildings. The poor photograph quality makes it difficult to determine the exact type of buildings and consequently land-use.

Lot 91 appears to be vacant undeveloped land, while Lot A is occupied by a residential dwelling with a detached building in the north-eastern corner which is assumed to be a garage.

Lot B (located in the south-western corner of the site) is occupied by at least 2 buildings. In the south-western corner of the allotment is an irregular shaped building, which is likely the same building which currently occupies the site. Based on land title information, this building was likely associated with a former service station. The other building or structure on Lot B is in the north-eastern corner. The type and use of this building could not be determined.

Predominately commercial or industrial properties appear to front Canterbury Road, while low density residential development appears to dominate the land further north and south.

1943 By 1943, part of the main shoe factory on Lot 1 and 2 had been constructed. At the time of this investigation, the factory building occupied the entire footprint of Lots 1 and 2, however, in the 1943 aerial photograph the factory only occupied the central portion of Lots 1 and 2 combined. In the south-eastern corner of Lot 2 (adjacent to Anderson Street) was a narrow building. The type and use of this building could not be determined, although base on the land title documentation this may have been a green grocer or newsagency.

There appeared to be little change to the remaining allotments (Lots 91, A and B) and surrounding land when compared to the 1930 photograph.

- 1951 There appears to be little change to the site compared to the 1943 image. Increased development is visible on the surrounding land to the north, south and west.
- 1961 By 1961 the remainder of the factory building across Lots 1 and 2 has been constructed. On the other allotments that make up the site, there appears to be little change compared to the 1951 image.

Again there appears to be increased development on the land adjoining the site.

1970 The main change to the site since the 1961 aerial photograph is the demolition and clearance of the residential dwelling and associated outbuilding on Lot A. Also, the driveway leading to the rear dock of the factory is present on Lot 91.

The surrounding land is similar in appearance to the 1961 image.

- 1978 By 1978 the residential apartment building on Lot A has been constructed. Elsewhere, there appears to be little change when compared to the 1970 image.
- 1986 There appears to be little change to the site and adjoining properties compared to the 1978 image.
- 1998 By 1998, the small building or structure in the north-eastern corner of Lot B has been cleared and this portion of the site is being used for carparking. The development of the site as shown in the 1998 aerial photograph is very similar to the appearance of the site at the time of this investigation and as described in the site survey prepared in early 2104 (**Appendix A**).

There appears to be little change to the adjoining properties compared to the 1986 image.

- 2001 There appears to be little change to the site and the adjoining properties compared to the 1998 image.
- 2003 There appears to be little change to the site and the adjoining properties compared to the 2001 image.
- 2007 There appears to be little change to the site and the adjoining properties compared to the 2003 image.
- 2009 There appears to be little change to the site and the adjoining properties compared to the 2007 image.
- 2011 There appears to be little change to the site and the adjoining properties compared to the 2009 image.

In summary, the existing single storey brick and metal building located in the south-western corner of the site was constructed prior to the earliest available site photograph taken in February 1930. The factory on Lots 1 and 2 was progressively developed between 1930 and 1961. The residential apartment building which currently occupies Lot A was constructed between 1970 and 1978 following demolition of a smaller residential dwelling. Lot 91 appears to have been vacant and largely undeveloped since 1930.

3.2 HISTORICAL TITLE INFORMATION

The historical title deed information, which was obtained from the Land and Property Information of NSW, reveals that the site was originally part of a larger parcel of land granted to Francis Wilde by Crown Grant on 13th June 1823.

A copy of the historical title information is provided for reference in **Appendix C** along with a summary table listing the past proprietors (owners) and leaseholders of the five allotments along with a description of likely land-use based on cross referencing with aerial photograph information, information from Council and searches conducted using GoogleTM.

As indicated by the title documentation, the current owners of the site (WM Ritchie Properties Pty Ltd) purchased the site from J. Robins & Sons Pty Ltd circa 2004 before leasing the site back to J. Robins & Sons Pty Ltd.

J. Robins & Sons Pty Ltd is a shoe manufacturing company, which purchased Lots 91, B, 1 and 2 around 1979 and Lot A in 1987. Lot A appears to have been used as a residential property since at least 1916 and this land-use has continued up until the time of this investigation. Lot B (in the south-western corner of the site) appeared to be a motor vehicle workshop and service station prior to being purchased by J. Robins & Sons Pty Ltd. The garage and/or service station appeared to operate from approximately 1929 when Motor & Engineering Works Ltd purchased the allotment. The allotment was then owned by various individuals listed as being a '*garage proprietor'* before Caltex Oil (Australia) Pty Ltd owned the allotment between 1953 and 1979.

Before lots 91, 1 and 2 were owned by J. Robins & Sons Pty Ltd, they were owned by the Crystal Clothing Industries Pty Ltd and/or David Chrystal (the owner of Crystal Clothing Industries). This company and/or David Chrystal had owned Lots 1 and 2 since approximately 1937 and purchased Lot 91 in 1959. GEE assumes that this company operated a clothing manufacturing business at the site which largely took place within the saw-tooth factory building occupying Lots 1 and 2. A review of the historical aerial photographs indicates that the factory building on Lots 1 and 2 first appeared soon after David Crystal purchased allotments in 1937. Prior to 1937, these allotments were owned by various individuals and possibly occupied by a green grocer and a newsagency.

Prior to being owned by Crystal Clothing Industries Pty Ltd, lot 91 (at the rear or northern end of the site) was also owned by various individuals and the land-use was likely to have been residential which is consistent with historical aerial photographs.

Overall, the most significant information obtained by the title documentation was the past use of Lot B (in the south-western corner) as a motor vehicle garage (or service station) between approximately 1929 to 1980.

3.3 **PROPERTY INFORMATION FROM SITE OCCUPIERS**

The current site occupiers (J. Robins & Sons Pty Ltd) provided a contract of sale document relating to Lot B (in the south-western corner of the site) and formerly identified as Lot 92 and 93 in DP3862. The contract of sale was dated 1979 and the vendor was Caltex Oil (Australia) Pty Ltd, which is consistent with the historical title documentation.

The contract document indicates that there was some equipment installed on the property which would '*remain at all times the property of the vendor'*. The equipment of most significance to this investigation, included:

- ♦ 5 x 455 to 900 litre tanks
- ♦ 1 x 5,400 litre underground tank
- ♦ 1 x 11,900 litre underground tank
- ◊ 1 x 16470 litre underground tank
- ◊ 1 x 20,140 litre underground tank

A plan showing the approximate location of the underground tanks was also provided as part of the contract of sale document. There are no records indicating that they were removed therefore GEE has assumed that they remain. A copy of the contract of sale document is provided in **Appendix D** and the approximate locations of the tanks are shown on **Figure 5**.

3.4 CANTERBURY MUNICIPAL COUNCIL RECORDS

GEE contacted the planning department of Canterbury Council to enquire about past development applications and approvals relating to the site which can provide an indication of past land-use activities. Unfortunately no information was available. GEE also contacted the Canterbury library to obtain some

historical information about the site and again no relevant information was available.

3.5 WORKCOVER NSW

GEE conducted a search of dangerous good licences with WorkCover NSW to obtain additional information of the USTs in the south-western corner of the site and potentially if there were any other tanks or dangerous goods stores across the site. The search did not provide any information about the USTs in the south-western corner. However, the search did confirm that J. Robins & Sons Pty Ltd had (or still has) a licence to store flammable liquids and adhesives within a few cabinets throughout the factory and dichloromethane within a roof-store in the factory. GEE inspected these and there was no evidence of leakage or past spills. Additionally, some boreholes were placed near some of the stores (e.g. BH23, BH26, BH27 and BH28) to assess potential subsurface contamination areas.

Of most significance from the WorkCover search results was the confirmation of a UST beneath the loading dock in the north-eastern corner of the site (**Figure 2**). The tank is 2,200 L in capacity and was abandoned in-situ in September 1996 by filling it with a concrete slurry. The suction line was removed and the vent line, fill pipe, dip pipe and bowser line sealed. GEE notes that a boreholes BH20 was placed within close proximity to the former UST and a groundwater monitoring well installed within the same borehole. Considering the age of the tank and the associated bowser, it is likely that the tank contained diesel or leaded petrol.

The results of the search are provided in Appendix E

3.6 CONTAMINATED LAND DATABASE

A search of the contaminated land database, which is available on the Office of Environment and Heritage (OEH) website, was conducted and revealed there has been no past record of written notices issued on the site, by OEH, under the Contaminated Land Management Act 1997 (CLM Act), including preliminary investigation orders. Additionally, the site has never been notified to the OEH under Section 60 duty to report contaminated sites, of the CLM Act.

Beyond the subject site it is noted that there are no properties within the suburb of Belmore that has had notices issued on them by the EPA, however, there are two properties in Belmore which have been notified to the EPA under Section 60 of the CLM Act. One of these properties is a 7-Eleven service station located at

792-794 Canterbury Road which is approximately 650 metres to the westsouthwest of the site, while the other property is State Rail land located at 348 Burwood Road which is approximately 1.1km to the north of the site. The contamination on each of these properties is considered by the NSW EPA to be not significant enough to warrant regulatory intervention under the Contaminated Land Management Act 1997. Considering their current status, distance from the subject site and regional topography, it is highly unlikely that these two properties have caused any impact on the subject site.

A copy of the list of NSW Contaminated Sites within the suburb of Belmore that have been notified to the EPA (as at 14 February 2014) is provided for reference in **Appendix F**.

3.7 SUMMARY OF SITE HISTORY INFORMATION

The existing single storey brick and metal building located in the south-western corner of the site was constructed prior to the earliest available site photograph taken in February 1930. The factory on Lots 1 and 2 was progressively developed between 1930 and 1961. The residential apartment building which currently occupies Lot A was constructed between 1970 and 1978 following demolition of a smaller residential dwelling. Lot 91 appears to have been vacant and largely undeveloped since 1930.

A review of the historical title information indicates that the site has been operating as a shoe factory since approximately 1979. Before 1979 the majority of the site (including lots 91, 1 and 2) was occupied by a clothing factory which commenced circa 1937.

Lot A, along the western boundary fronting Drummond Street, appears to have been used as a residential property since at least 1916 and this land-use has continued up until the time of this investigation. Lot B (in the south-western corner of the site) appeared to be a motor vehicle workshop and service station prior to being purchased by J. Robins & Sons Pty Ltd in circa 1980. The garage and/or service station was likely operated between approximately 1929 when Motor & Engineering Works Ltd purchased the allotment. The allotment was then owned by various individuals listed as being a '*garage proprietor*' before Caltex Oil (Australia) Pty Ltd owned the allotment between 1953 and 1979.

4 SITE CONDITION AND SURROUNDING ENVIRONMENT

This section describes the site and surrounding environment and is obtained from a review of any available maps and a site inspection conducted by GEE on the 23rd October 2013.

4.1 SITE IDENTIFICATION AND DESCRIPTION

The site is bounded by Canterbury Road to the south, Drummond Street to the west and Anderson Street to the east. To the north are low density residential properties.

At the time of the investigation the site was owned by WM Ritchie Properties Pty Ltd and leased to J. Robins & Sons Pty Ltd, a shoe manufacturing company which had previously owned the site from approximately 1979. Shoe manufacturing predominately took place within a factory (plate 1) occupying the central and eastern portion of the site (lots 1 and 2 of DP 533919). The factory was predominately set over one level with a mezzanine level along the western side and a basement in the northern portion. The eastern portion of the factory was where the polyurethane shoe soles were moulded and the cutting of shoe materials and final construction of the shoes was undertaken in the western portion of the factory. Based on information from J. Robins & Sons Pty Ltd, the main use of chemicals (apart from polyurethane for the soles) included glue (adhesives) for final construction of the shoes. Leather and other shoe materials were imported to site and not coloured or dyed on site.

An inspection of the factory revealed that the entire ground floor and basement level had a concrete floor slab which appeared to be in good condition with little evidence of cracking or staining from past use of chemicals. Chemicals were stored either in drums in the main manufacturing area or in raised cabinets. A vehicle loading dock was located in the north-western and north-eastern corners of the factory. Beneath the floor of the dock was a 2,200 litres underground storage tank which had been decommissioned using concrete slurry in 1996. The factory appeared to be steel framed with brick walls and a compressed fibro roof which was likely to contain asbestos.

Lot 91 in the north-western corner of the site was undeveloped land which was being used as a carpark and truck access to the shoe factory (plate 2). A concrete paved driveway linked the loading dock within the north-western corner of the factory with Drummond Street to the west. The remainder of this

allotment was predominately paved with asphalt with the exception of a grass strip along the northern boundary.

Lot A (along Drummond Street) was occupied by a three level residential apartment building with grass lawns to the west and a concrete pavement on all remaining sides (plate 3). The building was constructed of brick and had a tiled roof.

Lot B, which is located in the south-western corner, was occupied by a single storey brick and metal building and detached single storey brick 'garage' building. The smaller, 'garage' building contained a backup generator for the adjoining factory which was understood to have not been required. This building was brick clad and had a steel roof.

The larger building on Lot B was in a state of disrepair and was being used for storage of old equipment from the main shoe factory. This building was steel framed with brick walls and a corrugated steel roof. GEE understands that this was once an operating part of the shoe factory, however, a downturn in the shoe business meant that this space was no longer required. There was a fibro and tile clad awning attached to the southern side of the larger building which covered a concrete paved area (adjacent to Canterbury Road). It is beneath this concrete where the former Underground storage Tanks (USTs) listed on the `contract of sale document' in **Appendix D**.

Existing site features are shown on the site survey provided in **Appendix A** and also **Figure 2**. Photographs of the site, which were taken at the time of the site inspection on the 23^{rd} October 2013, are provided for reference in Plates 1 to 6 below.

Plate 1 – View towards the east along the southern boundary showing the external factory wall

Plate 2 – View towards the north across Lot 91 showing the asphalt car parking area and concrete driveway in the background.

Plate 3 – View towards the east along the northern side of the residential apartment building.

Plate 5 – View towards the west where the former garage / service station was located.

Plate 4 – View towards the east where the former garage / service station was located.

Plate 6 – View towards the south across Lot B with the factory building to the left.

4.1.1 Tanks and Associated Services

During the inspection, GEE did not observe any evidence indicating the presence of under-ground, or above-ground, fuel or chemical, storage tanks on or beneath the site. However, it is known that four USTs are likely present in the south-western corner of the site which were associated with a former garage / service station. Based on a former contract of sale document associated with this parcel of land (**Appendix D**), the USTs range in size from 5,400 litres to 20, 140 litres and are owned by Caltex Oil (Australia) Pty Ltd.

The layout of the USTs is shown on a plan provided in **Appendix D** and **Figure 5**.

4.1.2 Fill

Based on the regional topography and site inspection it is considered unlikely that the site has been subjected to any substantial filling.

4.1.3 Odours and Staining

No unusual odours or surface staining that could be potentially associated with contamination were noted during the site inspection.

4.2 TOPOGRAPHY

According to the site survey plan (**Appendix A**), the site has an elevation of between 41m and 46m above Australian Height Datum (AHD). The highest ground is located at the southern end of the site (adjacent to Canterbury Road) and the ground slopes down towards the opposite boundary at a gentle grade of approximately 5%.

4.3 PROPOSED LAND-USE

GEE understands that the proposed development will be consistent with the existing land-use zoning of '*B6 – Enterprise Corridor & R3 Medium density residential'*.

4.4 REGIONAL GEOLOGY AND SOILS

A review of the Sydney 1:100 000 Geological Map (Reference 4) A review of the Sydney 1:100 000 Geological Map indicates that the site is underlain by the Ashfield Shale formation which typically comprises "...*black to dark-grey shale and laminate*" of the Wianamatta Group.

A review of the regional soils map (reference 5) indicates that the site is located within the Blacktown Soil Landscape Group which typically comprise heavy, highly reactive clays derived from the weathering process of shale bedrock, and have low fertility and are often strongly acidic.

4.5 REGIONAL HYDROGEOLOGY

The regional groundwater in the vicinity of the site is likely to be confined or partly confined, discrete, water-bearing zones within the Ashfield shale formation.

Generally, the permeability of the shale matrix is very low (between 10^{-13} and 10^{-9} m/sec – reference 6) and groundwater flow is dominated by water movement through fractures (or joints), where stress has caused partial loss of cohesion in the rock. Evidence of potential water bearing fractures is usually the presence of clay or iron-staining along face of the joints.

A search of registered groundwater bores within the vicinity of the site identified four monitoring bores installed on a property approximately 1.2km to the northnorth-west of the site. The bores were installed for Caltex Oil (Australia) Pty Ltd and no other relevant information was recorded.

5 CONCEPTUAL SITE MODEL

The conceptual site model is a representation or summary of information obtained regarding potential contamination sources, receptors and exposure pathways between the sources and receptors.

Based on GEE's knowledge of the site, including review of the site's history and physical and environmental setting, the main sources of potential contamination include:

- Past use of Lot B in the south-western corner as a motor garage and/or service station, including the storage and use of fuel in underground tanks. The use of fuel and/or oils have the potential to cause soil and groundwater contamination although the concrete pavements would have minimised any migration of fuel and/or oil contaminants from the surface into the soil profile and the migration of fuels and oils below ground would be restricted by the fact that the local soils in this part of Sydney are typically heavy, lowpermeable, clays.
- Past use of Lots 1 and 2 for shoe and clothing manufacturing which can include the use of chemicals such as polyurethane, glue and dyes. The use of chemicals on site may have resulted in a 'top down' spills or leaks in isolated locations across the site. Again, the concrete pavements would have restricted the migration of chemicals into the soil profile and further downward migration of chemicals would be restricted by the fact that the local clay soils. Also there was no obvious evidence of past spills or leaks from the cabinet and roof chemical stores.
- Past storage of fuel (likely diesel or petrol) in a 2,200 L UST beneath the loading dock in the north-eastern corner. Like the USTs in the south-western corner any spills or leaks from the UST or associated infrastructure would be restricted by the concrete slab and/or the local soils in this part of Sydney are typically heavy and low-permeable.
- Vehicle access to parts of the site (particularly Lots 91, A and B) which could have resulted in 'top down' spills or leaks of oil or fuel in isolated locations across the site. The concrete and/or asphalt pavements in these areas would have minimised any migration of contaminants into the soil profile and the local clay soils would have restricted any further downward migration of contaminants.

Past development of the site. With any site development works there is a possibility that fill material was used to raise site levels, or to create a level building platform. When sourced from an unknown origin, the quality of the fill is also unknown and potentially contaminated. Based on the regional topography (which was relatively flat) and the historical aerial photographs, it is considered unlikely that the site has been subjected to any substantial filling and therefore the risk of contaminated fill being present beneath the site is considered to be very low.

Another potential for contamination, albeit minor, is the structures on site which are clad (in parts) with fibrous cement sheeting likely to contain asbestos.

A summary of the potential contaminating activities, their potential location on the site and the potential contaminants of concern attributed to these activities, are summarised below in **Table 1**.

Area of Environmental Concern (AEC)	Potential Contaminating Activity	Chemical of Potential Concern (COPC)	Likelihood of Soil / Groundwater Contamination
Former Motor Garage / Service Station (Lot B)	Use and storage of fuel and oils	Total Recoverable Hydrocarbons (TRH), BTEX (Benzene, Ethylbenzene, Toluene and Xylenes), Polycyclic Aromatic Hydrocarbons (PAHs).	Medium to High (particularly with respect to the USTs)
Factory (Lots 1 and 2)	Use and storage of chemicals including polyurethane, glue (adhesives) and possibly dyes	TRH, Metals	Medium
Former UST beneath the NE corner loading dock	Use and storage of fuel	TRH,BTEX, Lead	Medium
Vehicle accessible Areas	Oil and/or fuel spills and leaks from vehicles	TRH, BTEX, Lead	Low
Entire Site	Potential past filling to create a level building platform or site	Metals, TRH, Polycyclic Aromatic Hydrocarbons (PAHs), Pesticides, PCBs and Asbestos ³	Low
On Site Structures and Buildings (in particular the factory across lots 1 and 2 and the awning on Lot B.	Use of building materials containing asbestos	Asbestos	Very Low

Table 1:	Summary of Potential Contamination
----------	------------------------------------

Overall, the potential for soil contamination is considered to be moderate to high, particularly in the vicinity of the former fuel storage infrastructure and the potential for groundwater contamination is considered to be low because groundwater in this part of Sydney is likely to be confined or partly confined within the underlying, relatively low permeable, shale formation.

³ These are common contaminants of concern for developed areas across Sydney.

6 SAMPLING AND ANALYSIS PROGRAM

The sampling and analysis program was designed with reference to the site's history and a recent site inspection. The purpose of the program was to characterise the soil conditions across the site in accordance with relevant EPA NSW guidelines to determine whether it would be suitable for the proposed land-use which includes residential with minimal access to soils.

In accordance with the NSW DEC *Contaminated Sites: Guidelines for NSW Site Auditor Scheme* (reference 7), the Data Quality Objectives (DQOs) process was used to define the type, quantity and quality of the data needed to support decisions relating to the environmental condition of a site. Details of the DQO process adopted for the soil sampling and analysis program is provided in **Appendix G**.

6.1 SAMPLING PROGRAM

The sampling program was undertaken by Stephen McCormack from GEE, an experienced environmental engineer, and comprised:

- Borehole drilling operations, including the installation of a groundwater monitoring wells within some boreholes,
- The collection of soil samples from each borehole for subsequent selective laboratory analysis, and
- ◊ The collection of a groundwater sample from the each groundwater monitoring well installed on the site, for subsequent laboratory analysis.

6.1.1 Borehole Drilling Operations and Logging

Twenty-eight boreholes (BH1 to BH28) were drilled in accessible areas across the site on the 16th December 2013, 17th December 2013 or 6th January 2014. The number of boreholes exceeds the minimum number of sampling points required for adequate site characterisation as defined by the EPA NSW and Australian Standards (reference 8 and 9).

Prior to commencement of the bores, a scan for potential underground services and utilities was completed and cross-checked with the results of a Dial Before you Dig (DBYD) search. Also a Ground Penetrating Radar (GPR) was used in the south-western corner to locate the USTs, however, the results were inconclusive.

Tankpits were visible, however, it could not determine if the USTs were in the tankpits.

The boreholes were positioned in accordance with a systematic sampling pattern to provide broadly even coverage across the site, subject to access and utility constraints. Although some areas, such as the USTs or chemical stores, were specifically targeted.

The boreholes were drilled using either a 85mm diameter stainless steel hand auger operated by Stephen McCormack of GEE, or with a mechanical Geoprobe 7822DT track mounted drilling rig which was owned and operated by Epoca Environmental Pty Ltd, using push tube technology and where necessary solid flight augers. The hand auger was used in areas where the mechanical rig could not access which were BH11, BH13, BH16 and BH21 to BH28.

The hand auger was decontaminated prior to use, by washing with laboratory grade, biodegradable and phosphate-free detergent, followed by rinsing with potable water. To check the adequacy of the decontamination a Rinsate sample was collected as required from the hand auger or solid flight auger (refer to section 7). Decontamination was not required for the remaining boreholes because they were drilled using dedicated, direct push, plastic sampling liners.

With the exception of boreholes BH16, BH21, BH22 and BH24, the bores were extended through any fill material before terminating in either natural clay soil profile or the underlying shale bedrock at depths of between 1.0m (BH11 & BH28) and 8.0m (BH2) below ground surface (bgs). BH16, BH21, BH22 and BH24 all refused on an obstruction within the upper fill layer at depths of between 0.3m (BH16) and 0.7m bgs (BH24). Overall, the target depth was either 0.5m into natural clay soil or, in the case of boreholes drilled adjacent to tanks, 1m beyond the likely depth of the adjoining tanks.

During drilling, the encountered fill and natural soils were geologically logged by an experienced environmental and geotechnical engineer taking care to describe the presence and depth of fill material / previously disturbed ground, the natural stratum, moisture, seeps or water baring zones, elevation of the water level/hydraulic head, and adverse aesthetics such as discolouration, odours or obvious evidence of contamination.

A summary of the subsurface conditions encountered is provided in Section 0, while a summary of the borehole information, including total depth, is provided in **Table 2** and their locations are shown on **Figures 3** and **4**.

Borehole ID	Date Completed	Drilling Method	Total Depth	Depth of Filling	Depth to Bedrock	Well Screen Interval
	-		(m BGS)	(m BGS)	(m BGS)	(m BGS)
BH1	16 Dec 13	Push Tube	1.2	0.4	1.1	
BH2	16 Dec 13	Push Tube / SFA	8.0	0.9	2.2	3.8 – 7.8
BH3	16 Dec 13	Push Tube / SFA	7.0	0.4	1.5	2.6 - 6.6
BH4	16 Dec 13	Push Tube / SFA	6.5	0.3	1.8	3.0 - 6.0
BH5	16 Dec 13	Push Tube / SFA	3.5	0.6	1.7	
BH6	16 Dec 13	Push Tube / SFA	4.0	2.3	2.3	
BH7	16 Dec 13	Push Tube / SFA	4.0	2.8	2.8	
BH8	16 Dec 13	Push Tube / SFA	3.5	2.8	2.8	
BH9	16 Dec 13	Push Tube / SFA	3.5	2.8	1.3	
BH10	16 Dec 13	Push Tube / SFA	6.5	0.5	1.3	3.0 - 6.0
BH11	17 Dec 13	Hand Auger	1.0	0.5	1.6 ¹	
BH12	17 Dec 13	Push Tube	1.5	0.6	1.4	
BH13	17 Dec 13	Hand Auger	1.2	0.4	1.9 ¹	
BH14	17 Dec 13	Push Tube / SFA	6.5	0.5	2.0	3.0 - 6.0
BH15	17 Dec 13	Push Tube	2.3	0.9	2.1	
BH16	17 Dec 13	Hand Auger	0.3	>0.3		
BH17	17 Dec 13	Push Tube	1.1	0.5	1.1 ¹	
BH18	17 Dec 13	Push Tube	1.3	0.5	1.2	
BH19	17 Dec 13	Push Tube	1.5	1.3	1.3	
BH20	17 Dec 13	Push Tube / SFA	7.5	1.3	1.7	2.9 – 6.9
BH21	6-Jan-14	Hand Auger	0.45	>0.45		
BH22	6-Jan-14	Hand Auger	0.5	>0.5		
BH23	6-Jan-14	Hand Auger	1.4	0.9	1.85 ¹	
BH24	6-Jan-14	Hand Auger	0.7	>0.7		
BH25	6-Jan-14	Hand Auger	0.75	0.4	0.75	
BH26	6-Jan-14	Hand Auger	1.2	0.6	1.55 ¹	
BH27	6-Jan-14	Hand Auger	1.2	0.15		
BH28	6-Jan-14	Hand Auger	1.0	0.3	1.5 ¹	

Table 2: Summary of the Borehole Information

m BGS = metres below ground surface

SFA – Solid Flight Auger

Note 1 – Inferred by the use of a Dynamic Cone Penetrometer (DCP)

6.1.2 Subsurface Conditions

The subsurface conditions, as observed in the boreholes, typically comprised some fill material over natural clay soil which graded into weathered shale bedrock. The depth of filling was typically between 0.15m and 1.3m bgs, although deeper sand fill was present in the vicinity of the USTs in the southwestern corner of the site. The depth to shale bedrock ranged from 0.75m to 2.2m bgs.

Detailed descriptions of the subsurface conditions on site is provided in the borehole logs provided in **Appendix H**, while a summary of the subsurface conditions across the majority of the site and excluding the vicinity of the USTs, is provided in **Table 3**.

Layer / Unit	Description	Depth to Base of Layer (m) ¹	
	CONCRETE or ASPHALT Pavements	0.05 – 0.2	
FILL	Mix of SAND, GRAVEL and CLAY across the majority of the site and SAND only in the vicinity of the UST tankpits.	0.15 – 1.3	
NATURAL SOIL	Silty CLAY: dark-brown, red-brown, orange-brown and pale grey, moist, medium to high plasticity with some ironstone gravel content.	0.75 – 2.2	
BEDROCK	SHALE: grey-brown, weathered.		

Table 3: Summary of Subsurface Conditions

Adverse aesthetics, specifically odours associated with potential contamination, were not noted during the fieldwork. Additionally, no potentially Asbestos Containing Materials (ACM) was observed in the bores during the drilling.

Permanent groundwater was not encountered during the drilling of each borehole. However, groundwater seepage did eventually occur in the monitoring wells installed within bores BH2, BH3, BH4, BH10, BH14 and BH20.

6.1.3 Soil Sampling

In accordance with NEPM (1999) Schedule B(2) *Guideline on Site Characterisation* (reference 2) samples were collected from boreholes immediately beneath the surface slab. At greater depths, samples were typically collected at approximately 0.5m intervals, or at changes in fill, or soil type, or at depths where the presence of contamination was indicated (*e.g.* based on odour, colour, unusual substances, liquids etc).

Soil samples were collected directly from either the push tube plastic liner or from the hand auger, using new latex or nitrile gloves and immediately placed in laboratory supplied, acid washed glass jars.

Care was taken to ensure that representative samples were obtained from the depth required and that sample integrity was maintained, particularly when dealing with potentially volatile and semi-volatile components. When collecting duplicates, samples to be analysed for volatiles were not mixed, rather they were split and placed directly into separate sample jars.

The samples were each labelled with a unique sample identification number, in addition to the date of collection and project number, before being placed on ice within an esky. The sample identification number was repeated on the borehole log (**Appendix H**) at the corresponding depth. At the end of sampling, the esky was returned to the GEE office and kept full of ice until collected by the laboratory courier (with a Chain of Custody (COC) form) on the next working day.

In accordance with AS4482.1 (reference 9), a series of Quality Assurance (QA) procedures were integrated within the sampling plan and included:

- ♦ The collection of Quality Control (QC) samples.
- ♦ The use of standardised field sampling forms developed by GEE.
- Documentation of calibration and use of field instruments.

QC samples were collected as appropriate including blind replicates and split duplicates at a frequency of 5 %, and the collection of trip blanks, trip spikes and rinsates. More detail about the QC sampling and analysis is provided in Section 7 and **Appendix I**.

At the completion of each borehole, including logging and the sampling of soils, each borehole, which was not converted into a groundwater monitoring well, was

backfilled with soil cuttings and the concrete surface reinstated. The boreholes which were converted into a groundwater wells were completed using a lockable steel gatic cover installed with concrete so it was slightly higher than the surrounding pavement levels. This was done to prevent stormwater from ponding around the gatic cover.

As previously mentioned, the supervising engineer filled out a borehole log on which was noted sample details and depths, and any obvious signs of contamination such as discolouration and/or odour.

A summary of the samples collected and analysed during this investigation and the sampling depths are provided in **Table 4**.

6.1.4 Field Screening of Soil Samples

Field screening was carried out using a PID on all soil samples collected where there was sufficient sample available. The purpose of the screening process was to indicate areas potentially impacted by volatile compounds and to assist in the selection of samples for laboratory analysis. A re-sealable polyethylene bag was partly filled with part of the soil sample allowing volatile gases to accumulate in the headspace of the bag. The gas levels in the headspace were then investigated with a calibrated PID equipped with a 10.6eV lamp. The PID was calibrated using zero (ambient) air and isobutylene span gases by the equipment supplier prior to the sampling event and the calibration certificate provided in **Appendix J**.

GEE notes that the VOCs detected by the PID may be affected by humid atmospheric conditions and other organics in the soil, therefore is only used as a qualitative tool.

The PID results did not indicate the presence of VOCs. A copy of the GEE 'PID headspace test field sheet' is provided in **Appendix K**.

6.1.5 Monitoring Well Installation

A groundwater monitoring well was installed within boreholes BH2, BH3, BH4, BH10, BH14 and BH20 in accordance with the Land and Water Biodiversity Committee (2003) *Minimum Construction Requirements for Water Bores in Australia* (reference 10), using 50 mm diameter uPVC pipe, with a machine

slotted screen section, 2 mm sand pack and a bentonite seal. The depths of the screened section of each well are provided in **Table 2**.

The purpose of the groundwater monitoring wells was to assess the presence and depth of stabilised groundwater at the site and facilitate the sampling of groundwater beneath the site and to assess potential contamination.

The groundwater well installation details are shown on the borehole logs in **Appendix H** and the location of the wells are shown on **Figures 3 and 4.**

6.1.6 Groundwater Monitoring and Sampling

Groundwater was sampled from each of the six monitoring wells following development and purging of the wells to remove stagnant water from the well casing and to ensure that the samples are representative of groundwater in the surrounding geological formation.

Development of the wells was undertaken on the 17th December 2013, using a Waterra foot valve and continued until dry, or at least 3 well volumes of water has been removed. The rate of re-charge for each well was relatively slow, therefore, each well went dry during development. Following development, the wells were allowed to recharge for a minimum of 5 days before purging and sampling.

Immediately prior to purging and sampling, the wells were dipped to determine the depth to stabilised water level and, using a clear disposable bailer, assessed for the presence of Light Non-Aqueous Phase Liquids (LNAPLs) which may be floating on the water. No LNAPLs were noted. Additionally, there was not hydrocarbon odour noted within the wells during purging or sampling. And no sheen or free-product observed on the surface of the water in each well.

Purging and sampling took place on the 6th January 2014. Each of the wells were within a low-transmissive formation, therefore, slow to re-charge and purging was undertaken using a dedicated Waterra foot valve until practically dry. Following purging, the wells were allowed to recharge to at least 80% before sampling. Sampling of these wells was carried out using dedicated disposable bailers equipped with a single check valve for transferring the sample into the sample containers, taking care not to agitate the water with the bailer. For volatile samples, a low flow VOC sampler was used.

A calibrated water quality meter was used during the sampling process to assess pH, redox potential (Eh), electrical conductivity (EC), dissolved oxygen (DO) and temperature.

For all samples, the groundwater was collected directly into laboratory supplied sample containers in order of volatility, with the most volatile substances collected first. Samples to be analysed for metals were collected last and filtered in the field using a new disposable 0.45micron filter and syringe. Samples to be analysed for volatile substances (*e.g.* BTEX), were filled to the container brim and capped, making sure that there were no bubbles / headspace.

All sample containers were immediately placed within an esky in which ice had been added. At the end of each sampling day the samples in the esky were transported to the GEE office where more ice was added and the samples delivered to the laboratory (within one working day).

All sample containers were labelled with the sample number, project number and date collected and the information repeated on a Chain-of-Custody (COC) form which accompanied the samples to the laboratory. The chain-of custody form (provided by the laboratory) demonstrates that the samples were properly received, documented, processed and stored.

While on site, the supervising engineer/scientist filled out a copy of the GEE "Groundwater Sampling Field Sheet" which documents, the sample identification, date of sampling, time of sampling, stabilised groundwater level, water quality field screening results, physical description of the water, presence or absence of odour, well condition and volumes purged. A copy of the "Groundwater Sampling Field Sheet" is provided in **Appendix K**.

Finally, it is noted that the purging and sampling equipment did not require decontamination because GEE used dedicated equipment for each well.

A summary of the groundwater samples collected and analysed during this investigation are provided in **Table 5**.

6.2 ANALYTICAL PROGRAM

In accordance with Section 5, selected soil samples were analysed for the following potential chemicals of concern:

- ♦ Metals (Arsenic, Cadmium, Chromium, Copper, Nickel, Lead and Zinc)
- ♦ TRH
- ♦ BTEX
- ♦ PAH
- ♦ OCPs
- ♦ PCBs
- ♦ Asbestos.

The groundwater samples collected from each well were analysed for dissolved metals, TRH, BTEX, PAH and VOC.

The primary soil and groundwater environmental samples were analysed by Envirolab Services Pty Ltd which is National Association of Testing Authorities (NATA) registered for the testing undertaken. The secondary samples (split duplicates) were sent to Eurofins / MGT Pty Ltd, which is also NATA accredited for the testing undertaken.

A summary of the soil analytical program, including which samples were selected for analysis and the chemicals analysed, is provided in **Table 4**, while a summary of the groundwater analytical program is provided in **Table 5**.

Table 4: Summary of the Soil Sampling and Analysis Program

o o o ti o v	Sample Depth	Commis I.I.	Meterial Terra			Analytical	Program		
Location	(m)	Sample Id	Material Type	Metals	Lead only	TRH/BTEX	PAHs	OCPs / PCBs	Asbesto
			PimaryEnvir	ormental Soil	Samples				
BH1	0.1 - 0.4	SM161213-01	FILL	\checkmark				\checkmark	
BH1	0.4 – 1.1	SM161213-02	CLAY	\checkmark					
BH2	0.1 – 0.25	SM161213-04	FILL	\checkmark		\checkmark	\checkmark		
BH2	0.7 – 0.8	SM161213-05	FILL	\checkmark			\checkmark		
BH2	0.9 - 1.0	SM161213-06	CLAY	\checkmark			\checkmark		
BH2	1.5 – 1.7	SM161213-07	CLAY						
BH2	2.5 - 3.0	SM161213-08	SHALE						
BH2	4.0 - 4.3	SM161213-09	SHALE						
BH3	0.1-0.2	SM161213-10	FILL	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
BH3	0.4-0.55	SM161213-11	CLAY						
BH3	1.2-1.4	SM161213-12	CLAY		\checkmark	\checkmark			
BH3	1.8-2.0	SM161213-13	SHALE		\checkmark	\checkmark			
BH3	3.0-3.5	SM161213-14	SHALE			—		—	
BH3	5.0-5.5	SM161213-15	SHALE			—			
BH4	0.15-0.3	SM161213-22	FILL	\checkmark		\checkmark	\checkmark	—	\checkmark
BH4	0.4-0.6	SM161213-23	CLAY	\checkmark		\checkmark			
BH4	1.0-1.2	SM161213-24	CLAY						
BH4	2.0-2.5	SM161213-25	SHALE		\checkmark	\checkmark			
BH4	4.0-4.5	SM161213-26	SHALE						
BH5	0.14-0.2	SM161213-33	FILL	\checkmark					
BH5	0.2-0.6	SM161213-34	FILL		\checkmark	\checkmark			
BH5	0.6-0.8	SM161213-35	CLAY			\checkmark			
BH5	1.0-1.2	SM161213-36	CLAY						
BH5	1.8-2.0	SM161213-37	SHALE						
BH5	3.3-3.5	SM161213-38	SHALE						
BH6	0.2-0.35	SM161213-39	FILL	\checkmark		\checkmark			
BH6	0.8-1.0	SM161213-40	FILL						
BH6	1.3-1.5	SM161213-41	FILL		\checkmark	\checkmark			
BH6	2.3-2.5	SM161213-42	SHALE		\checkmark	\checkmark			
BH6	3.5-4.0	SM161213-43	SHALE						
BH7	0.0-0.2	SM161213-44	FILL	\checkmark					
BH7	0.3-0.5	SM161213-45	FILL		\checkmark	\checkmark			
BH7	1.1-1.3	SM161213-46	FILL						
BH7	2.5-2.8	SM161213-47	FILL	\checkmark		\checkmark	\checkmark		
BH7	3.0-3.5	SM161213-49	SHALE		\checkmark	\checkmark			
BH8	0.2-0.4	SM161213-16	FILL	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
BH8	1.1-1.3	SM161213-18	FILL						
BH8	1.5-1.6	SM161213-19	FILL						
BH8	2.3-2.55	SM161213-20	FILL	\checkmark		\checkmark			
BH8	2.8-3.0	SM161213-21	SHALE						
BH9	0.15-0.2	SM161213-27	FILL	\checkmark		\checkmark	\checkmark		\checkmark
BH9	0.2-0.35	SM161213-28	FILL	\checkmark		\checkmark			
BH9	0.5-0.7	SM161213-29	CLAY						
BH9	1.1-1.2	SM161213-30	CLAY		\checkmark	\checkmark			
BH9	2.0-2.5	SM161213-31	SHALE						
BH9	3.5-4.0	SM161213-32	SHALE					_	
BH10	0.2-0.3	SM161213-50	FILL	\checkmark		\checkmark	\checkmark	\checkmark	
BH10	0.3-0.5	SM161213-51	FILL	↓ ↓		√	✓		
BH10	0.5-0.7	SM161213-52	CLAY	✓				_	
BH10	1.3-1.5	SM161213-53	SHALE				_	_	
BH10	2.5-3.0	SM161213-54	SHALE		_			_	
BH10	4.5-5.0	SM161213-55	SHALE	\checkmark					
BH10	5.5-6.0	SM161213-56	SHALE						
BH11	0.0-0.15	SM171213-81	FILL	\checkmark		1	\checkmark	1	
BH11	0.5-1.0	SM171213-82	CLAY	• 		• 	¥	• 	
BH12	0.1-0.15	SM171213-60	FILL	1				_	
BH12 BH12	0.3-0.4	SM171213-61	FILL	• 				_	
BH12 BH12	0.6-0.8	SM171213-62	CLAY	./		./	1	_	./
	0.0-0.0	0		v		v	v		v

Table 4 (Continued): Summary of the Soil Sampling and Analysis Program

Leestien	Sample Depth	Comula Id	Material Trues			Analytical F	Program		
Location	(m)	Sample Id	Material Type	Metals	Lead only	TRH/BTEX	PAHs	OCPs / PCBs	Asbestos
	Sample id 3 0.2-0.4 SM171213-6 3 0.4-0.6 SM171213-6 3 1.0-1.2 SM171213-7 4 0.25-0.4 SM171213-6 4 0.5-0.7 SM171213-6 4 0.5-0.7 SM171213-6 4 1.8-2.0 SM171213-7 5 0.1-0.2 SM171213-7 5 0.3-0.5 SM171213-7 5 0.3-0.5 SM171213-7 5 0.9-1.1 SM171213-7 6 0.2-0.3 SM171213-7 7 0.15-0.3 SM171213-7 7 0.5-0.7 SM171213-7 7 0.5-0.7 SM171213-8 8 0.2-0.3 SM171213-8 8 0.2-0.3 SM171213-8 8 0.2-0.3 SM171213-8 9 0.2-0.3 SM171213-8 9 0.2-0.3 SM171213-8 9 0.2-0.3 SM171213-8 9 0.3-0.5 SM171213-8		PimaryEnviro	ormental Soil S	Samples				
BH13		SM171213-64	FILL	\checkmark		\checkmark	\checkmark	\checkmark	
BH13	0.4-0.6	SM171213-66	CLAY						
BH13	1.0-1.2	SM171213-71	CLAY		—			—	—
BH14	0.25-0.4	SM171213-67	FILL	\checkmark		\checkmark	\checkmark		\checkmark
BH14	0.5-0.7	SM171213-68	CLAY	\checkmark			\checkmark		
BH14	1.8-2.0	SM171213-69	CLAY		—			—	—
BH14	2.0-2.2	SM171213-70	SHALE						
BH15	0.1-0.2	SM171213-74	FILL	\checkmark					
BH15	0.3-0.5	SM171213-75	FILL	\checkmark		\checkmark	\checkmark		
BH15	0.9-1.1	SM171213-76	CLAY	\checkmark			\checkmark		
BH15	2.1-2.3	SM171213-77	SHALE						
BH16	0.2-0.3	SM171213-72	FILL	\checkmark		\checkmark	\checkmark		\checkmark
BH17	0.15-0.3	SM171213-78	FILL	\checkmark					
BH17	0.5-0.7	SM171213-79	CLAY	\checkmark	—			—	
BH17	1.0-1.1	SM171213-80	CLAY						
BH18	0.1-0.2	SM171213-83	FILL	\checkmark					
BH18	0.2-0.3	SM171213-84	FILL	\checkmark		\checkmark	\checkmark		\checkmark
BH18	0.5-0.7	SM171213-85	CLAY						
BH18	1.2-1.3	SM171213-86	SHALE						
BH19	0.2-0.3	SM171213-87	FILL	\checkmark		\checkmark	\checkmark	\checkmark	
BH19	0.3-0.5	SM171213-89	FILL	\checkmark					
BH19	1.0-1.2	SM171213-90	FILL	\checkmark					
BH19	1.3-1.5	SM171213-91	SHALE		_				
BH20	0.2-0.3	SM171213-92	FILL	\checkmark	_	\checkmark	\checkmark	\checkmark	
BH20	0.35-0.5	SM171213-94	FILL	✓					
BH20		SM171213-95	FILL	✓					
BH20		SM171213-96	CLAY	✓ ·					
BH20			SHALE	· ·					
BH20			SHALE						
BH20			SHALE						
BH21			FILL	 ✓ 		\checkmark	\checkmark		
BH22			FILL	· ·		· ·	· ·	\checkmark	\checkmark
BH23			FILL					—	
BH23			FILL			\checkmark	\checkmark		
BH23			CLAY			· ·	• •		
BH24			FILL			• 		\checkmark	
BH24	0.3-0.5	SM060114-89	FILL	· ·		\checkmark		• —	
BH25	0.2-0.4	SM060114-90	FILL			↓		\checkmark	
BH25	0.4-0.55	SM060114-90	CLAY	V .		• 	✓ 	• 	•
BH26	0.15-0.3	SM060114-92	FILL	V		\checkmark	\checkmark		
BH26	0.5-0.6	SM060114-93	FILL	× ·		• 	• 		
BH26	0.6-0.8	SM060114-94 SM060114-95	CLAY	V					
BH20 BH27	0.2-0.4	SM060114-95	CLAY	V		 ✓	_		
BH27 BH27	0.2-0.4	SM060114-96 SM060114-98	CLAY	V		,	√		v
				√		\checkmark	v		
BH28	0.2-0.3	SM060114-99	FILL	V		✓	√	✓	
BH28	0.3-0.5	SM060114-100		√ 50		 		40	
			TOTALS	59	9	41	30	12	11

Table 4 (Continued): Summary of the Soil Sampling and Analysis Program

Location BH1 BH7 BH8 BH13 BH16 BH19 BH20 BH22 BH23 BH22 BH23 BH24 BH25 BH25 BH27 	Sample Depth	O anna la lat				Analytica	I Progra	m	
Location	(m)	Sample Id	Material Type	Metals	Lead only	TRH/BTEX	PAHs	OCPs / PCBs	Asbestos
			Soil Quality Control Sa	amples – Bat					
BH1	0.4 – 1.1	SM161213-03	Blind Replicate of '02'	\checkmark					
BH7	2.5-2.8	SM161213-48	Split Duplicate of '47'	\checkmark		\checkmark	\checkmark		
BH8	0.2-0.4	SM161213-17	Blind Replicate of '16'	\checkmark		\checkmark	\checkmark	\checkmark	
BH13	0.2-0.4	SM171213-65	Blind Replicate of '64'	\checkmark		\checkmark		_	
BH16	0.2-0.3	SM171213-73	Split Duplicate of '72'	\checkmark				_	
BH19	0.2-0.3	SM171213-88	Split Duplicate of '87'	\checkmark		\checkmark	\checkmark	\checkmark	
BH20	0.2-0.3	SM171213-93	Blind Replicate of '92'	\checkmark		\checkmark	\checkmark		
		Trip Blank 16/12	Soil			\checkmark^{\perp}		—	
		Trip Spike 16/12	Soil			\checkmark^{\perp}		—	
		Trip Blank 17/12	Soil			\checkmark^{\perp}		—	
		Trip Spike 17/12	Soil			\checkmark^{\perp}			
		Rinsate 1	Rinsate from SFA	\checkmark		\checkmark	\checkmark	—	
		Rinsate 2	Rinsate from hand auger					_	
			Soil Quality Control Sa	amples – Bat	ch 2				
BH22	0.2-0.4	SM060114-82	Blind Replicate of '81'	\checkmark		\checkmark	\checkmark		
BH23	0.6-0.8	SM060114-85	Split Duplicate of '84'						
BH24	0.1-0.25	SM060114-88	Blind Replicate of '87'					_	
BH25	0.2-0.4	SM060114-91	Split Duplicate of '90'						
BH27	0.2-0.4	SM060114-97	Blind Replicate of '96'						
		Trip Blank 06/01	Soil			\checkmark^{\perp}	—	—	
		Trip Spike 06/01	Soil			\checkmark^{\perp}	—	—	
		R2	Rinsate from hand auger	\checkmark		\checkmark			

Note 1: BTEX and TRH (C6-C9) only

Table 5: Summary of the Groundwater Sampling and Analysis Program

			Analyti	cal Program	
Location	Sample Id	Metals	TRH/BTEX	PAHs	VOCs
	Primary G	broundwater Sa	amples		
BH2	SM161213-104	\checkmark	\checkmark	\checkmark	\checkmark
BH3	SM161213-106	\checkmark	\checkmark	\checkmark	\checkmark
BH4	SM161213-107	\checkmark	\checkmark	\checkmark	\checkmark
BH10	SM161213-103	\checkmark	\checkmark	\checkmark	\checkmark
BH14	SM161213-105	\checkmark	\checkmark	\checkmark	\checkmark
BH20	SM161213-101	\checkmark	\checkmark	\checkmark	\checkmark
	Qualit	y Control Sampl	es		
BH20	SM161213-102 (Blind Replicate)	\checkmark	\checkmark	\checkmark	\checkmark
	Trip blank		\checkmark^{\perp}		
	Trip Spike	—	\checkmark^{\perp}		

Note 1: BTEX and TRH (C6-C9) only

7 DATA QUALITY ASSESSMENT

A detailed Quality Assurance (QA) assessment, including the analysis of Quality Control (QC) samples, was carried out by GEE to determine the suitability and reliability of field procedures and analytical results. In accordance with NSW DEC (reference 7), the QA assessment used Data Quality Indicators (DQIs) which included:

- \diamond precision.
- ♦ accuracy (or bias).
- ◊ representativeness.
- ◊ completeness.
- ◊ comparability.

The detailed QA assessment report is provided in **Appendix I**, and concludes that the field procedures and analytical data presented herein are of suitable quality for making conclusions and recommendations regarding the contamination status of the site.

8 ASSESSMENT CRITERIA

To determine the significance of any contaminants detected in the soil and groundwater samples, appropriate Site Assessment Criteria (SAC) have been defined and are based on guidelines endorsed by the NSW OEH.

8.1 SOIL SAMPLES

For any environmental assessment, it is necessary to assess the human health and ecological risks associated with the presence of site contamination. In this regard, appropriate human health and ecological investigation and/or screening levels need to be defined and are referred herein as the Site Assessment Criteria (SAC).

Also, in accordance with Appendix I of DEC, 2006 guidelines (reference 4), residential sites need to address aesthetics such as highly malodorous soils. Aesthetics was continually assessed in the field during borehole drilling and logging and no significant and adverse observations were noted.

8.1.1 Ecological Investigation / Screening Levels

To address potential ecological risks, GEE has compared the soil analytical results against the Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) appropriate for the commercial/industrial land-use as detailed in NEPM (2013), *Schedule B(1) – Guidelines on Investigation Levels for Soil and Groundwater* (reference 11).

8.1.1.1 EILs

EILs were derived for common contaminants in soil (specifically Arsenic, Copper, Chromium (III), DDT, naphthalene, Nickel, Lead and Zinc) and are based on a species sensitivity distribution (SSD) model developed for Australian conditions. They consider the physicochemical properties of soil (e.g. Cation Exchange Capacity, pH and clay content), contaminants and the capacity of the local ecosystem to accommodate increases in contaminant levels (referred to as the 'added contaminant limit' or ACL) above ambient background. Also, EILs consider various land use scenarios and are generally only apply to the top 2m of soil which corresponds to the root zone and habitation zone of many species.

Finally, different EILs apply for 'fresh' contamination and 'aged' contamination. 'Fresh' contamination is usually associated with current activity and chemical spills, while a contaminant that has been incorporated into a soil for more than 2 years is considered to be 'aged'. For the purpose of this report 'aged' EILs have been adopted because any contamination present at the site is likely to have been present for more than 2 years.

To assist with determining appropriate EILs to screen the soil analytical results (particularly for Copper, Chromium -III, Nickel and Zinc), the CEC and pH of the soil was analysed for relevant soils samples. The CEC ranged from 1.3 to 106 meq/100g with an average of 16.3 meq/100g, and were slightly higher for samples comprising fill compared to natural soil and bedrock. The pH values ranged from 4.5 to 11.5 with an average of 6.9 meq/100g, and were also slightly higher for samples comprising fill material compared to natural soil and bedrock. For the purpose of this report and to screen the analytical results, GEE has adopted the lower 10^{th} percentile value for both CEC and pH which was a CEC of 5.1 meq/100g and pH of 5.0. Additionally, considering the soil profile (including any fill material) was predominately clay-based soil, a >10% clay composition has been adopted when determining the EIL for chromium (III). Also when determining an appropriate EIL for Copper a conservative % of organic carbon content of 1% has been adopted.

When determining the EILs for Copper, Nickel, Chromium and Zinc, ambient background concentrations can be used to increase the final EIL, however, for the purpose of this investigation zero ambient background concentrations have been adopted.

A summary of the EILs appropriate for the site is provided in **Table 6**.

8.1.1.2 ESLs

ESLs have been developed for selected petroleum hydrocarbon compounds (specifically TRH⁴, BTEX and Benzo(a)pyrene) and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and like EILs the ESLs consider various land use scenarios, only apply to the top 2m of soil and differ for 'fresh' contamination and 'aged' contamination. For the purpose of this report, coarse-grained soil and 'aged' ESLs have been

⁴ ESLs for the various carbon fractions are based on TRH analysis with F1 (C6-C9) being obtained after subtraction of BTEX.

adopted. Coarse grained soil was adopted over fine grained soil because it provides the most conservative criteria and if an exceedance occurs then the criteria will be adjusted to suit the actual soil type.

A summary of the ESLs appropriate for the site is provided in **Table 6.** GEE notes that screening levels are the concentrations of a contaminant above which will require further evaluation and consideration.

8.1.2 Health Investigation Levels

To address potential health impacts at the site, GEE has compared the analytical results against Health Investigation Levels (HILs) provided in NEPM (2013), *Schedule B(1) – Guidelines on Investigation Levels for Soil and Groundwater* (reference 11) which are appropriate for the proposed land-use (*i.e.* residential with minimal access to soil, including apartment buildings) and the exposure scenario on which they are based (Exposure setting B).

For selected petroleum hydrocarbons, Health Screening Levels (HSLs), which were developed by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), have been adopted and are referenced in Schedule B(1) of NEPM (2013 – reference 11) and Friebel & Nadebaum (2011 – reference 12). Typically, the assessment of petroleum hydrocarbon contamination is driven by human health concerns relating to volatile components (e.g TRH $C_6 - C_{10}$, TRH $>C_{10} - C_{16}$ and Benzene) which have the potential to cause health issues via vapour intrusion. For these components, different HSLs apply for different land use scenarios, for different soil types (i.e. sand silt and clay) and different depths. For the purpose of this investigation, criteria relevant for sand soil at a shallow depth (0m to 1m) have been adopted to screen the soil analytical results because they are most conservative (except for Xylene where fine soil criteria is the most conservative). If a sample exceedance occurs then the criteria will be adjusted to suit actual soil type and depth.

For TPH fractions, where there are no vapour intrusions HSLs available, management limits have been adopted (Table A4 – reference 11). The management limits are designed to avoid or minimise potential effects of petroleum hydrocarbons including:

- ♦ The formation of observable light non-aqueous phase liquids (LNAPL),
- ◊ Fire and explosive hazards, and
- ◊ The effects on buried infrastructure e.g. penetration of, or damage to, inground services by hydrocarbons.

Again, there is different management limits for the various land use scenarios and GEE has adopted the management limits appropriate for commercial / industrial sites.

A summary of the HILs/HSLs appropriate for the site is provided in **Table 6**.

Table 6: Soil Site Assessment Criteria (SAC)

Analyte	_	eening Levels (HILs/HSLs) g/kg)		tigation/Screening Levels EILs/ESLs) (mg/kg)
, ,	Exposure Setting B – Apartment Buildings	Reference	Residential	Reference
		Total Metals		
Arsenic	500	Table 1A – Reference 11	100	Table 1B(5) – Reference 1
Cadmium	150	Table 1A – Reference 11		
Chromium (VI)	500	Table 1A – Reference 11		
Chromium (III)			410	Table 1B(3) – Reference 1
Copper	30,000	Table 1A – Reference 11	100	Table 1B(2) – Reference 1
Lead	1,200	Table 1A – Reference 11	1,100	Table 1B(5) – Reference 1
Mercury (inorganic)	120	Table 1A – Reference 11		
Nickel	1,200	Table 1A – Reference 11	40	Table 1B(3) – Reference 1
Zinc	60,000	Table 1A – Reference 11	210	Table 1B(1) – Reference 1
	Tota	I Polychlorinated Biphenyls (PCB	s)	
Total PCBs	1	Table 1A – Reference 11		
	Polyc	yclic Aromatic Hydrocarbons (PA	Hs)	
Naphthalene	3	Table 1A(3) – Reference 11	170	Table 1B(5) – Reference 1
Benzo(a)pyrene			0.7	Table 1B(6) – Reference 1
Benzo(a)pyrene TEQ	4	Table 1A – Reference 11		
TOTAL PAHs	400	Table 1A – Reference 11		
		Organochlorine Pesticides (OCP)		
Heptachlor	10	Table 1A – Reference 11		
Aldrin + Dieldrin	10	Table 1A – Reference 11		
Endrin	20	Table 1A – Reference 11		
Chlordane	90	Table 1A – Reference 11		
Endosulfan	400	Table 1A – Reference 11		
HCB	15	Table 1A – Reference 11		
Methoxychlor	500	Table 1A – Reference 11		
DDE + DDD + DDT	600	Table 1A – Reference 11		
		Table TA – Reference TT	400	Table (D(C) Deference (
DDT	-	BTEX	180	Table 1B(5) – Reference 1
			50	
Benzene	0.5	Table 1A(3) – Reference 11	50	Table 1B(6) – Reference 1
Toluene	160	Table 1A(3) – Reference 11	85	Table 1B(6) – Reference 1
Ethylbenzene	55	Table 1A(3) – Reference 11	70	Table 1B(6) – Reference 1
Xylenes	40 Tota	Table 1A(3) – Reference 11 I Recoverable Hydrocarbons (TRF	45 	Table 1B(6) – Reference 1
(F1) C6 – C10	45	Table 1A(3) – Reference 11	180	Table 1B(6) – Reference 1
(F2) >C10 - C16	110	Table 1A(3) – Reference 11	120	Table 1B(6) – Reference 1
(F3) >C16 – C34	2,500	Table 1B(7) – Reference 11	300	Table 1B(6) – Reference 1
(F4) >C34 – C40	10,000	Table 1B(7) – Reference 11 Asbestos	2,800	Table 1B(6) – Reference 1
0 (0 "				
Surface Soil	No visible Asbestos	Table 7 – Reference 11		
Buried Bonded	0.04%	Table 7 – Reference 11		
Buried Friable	0.001%	Table 7 – Reference 11		

8.2 WATER SAMPLES

Assessment criteria for groundwater were derived from the NEPM (2013), Schedule B(1) – Guidelines on Investigation Levels for Soil and Groundwater (reference 10) which are based on the ANZECC/ARMCANZ (2000) water quality guidelines (reference 13).

Trigger values for marine water were adopted for this study rather than fresh water guidelines, on the basis that the receiving system for groundwater at the site is most likely to ultimately be the Cooks River then Botany Bay. Groundwater is unlikely to be extracted for potable water supply because of the low permeable soil and bedrock formation and the fact that the groundwater sampled from the site is relatively high in salinity (refer to Section 9.2). This is also supported by the search of registered groundwater bores in the vicinity of the site which only revealed a few monitoring bores within 1km of the site (refer section 4.5).

ANZECC/ARMCANZ (2000) specifies four sets of trigger values corresponding with different levels of protection for ecosystem conditions. Trigger values, derived using the statistical distribution method, relate to the protection of 99%, 95%, 90% and 80% of species in an aquatic ecosystem. Three "categories of ecosystem conditions" are developed in the guidelines and the level of protection afforded to a particular ecosystem should be determined following consideration of site conditions in consultation with key stakeholders. Additionally, for each chemical, ANZECC/ARMCANZ (2000) provides three grades of guideline trigger values: high, moderate or low reliability trigger values. The grade depends on the data available and hence the confidence or reliability of the final figures.

The groundwater investigation levels (GILs) in NEPM (2013) relate to "slightly to moderately disturbed" aquatic ecosystems and adopt trigger values with high or moderate reliability. In the absence of high or moderate reliable marine water criteria, GEE has adopted the high or moderate reliable criteria for fresh water. Then, in the absence of high or moderate trigger values, GEE has applied low reliability trigger levels from ANZECC/ ARMCANZ (2000) as 'first pass' criteria. It should be noted that low reliability trigger values were originally derived from insufficient data sets and should not be used as final guidelines but as indicative interim figures, which if exceeded, suggest the need to obtain further data.

In the case of TRH and BTEX, Health Screening Levels (HSLs) which were developed by the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) have been adopted and are

referenced in Schedule B(1) of NEPM (2013 – reference 11) and Friebel & Nadebaum (2011 – reference 12). Typically the assessment of petroleum hydrocarbon contamination is driven by human health concerns relating to volatile components (e.g TRH $C_6 - C_{10}$, TRH $>C_{10} - C_{16}$ and Benzene) which have the potential to cause health issues via vapour intrusion. The criteria changes depending on the soil type and depth and for the purpose of this assessment GEE have adopted the most conservative criteria which relates to sand and a depth of between 2.0 to >4.0 metres. Also, considering that the site is proposed to be developed into residential apartments HSL-B criteria is appropriate for vapour intrusion criteria.

Finally, in all cases where the laboratory limit of reporting exceeds the ANZECC/ARMCANZ (2000) trigger value, the detection limit of that analyte is used as a trigger for further investigation.

A summary of the GILs adopted for this site is provided in **Table 7**.

Table 7: Groundwater Investigation Levels (GLs)

	-	-	
Analyte	Units	GILs ¹	Source
Metals			
Arsenic V	μg/L	13	Table 1C (fresh) - Reference 11
Cadmium	μg/L	0.7	Table 1C (marine)- Reference 11
Chromium IV	μg/L	4.4	Table 1C (marine)- Reference 11
Copper	μg/L	1.3	Table 1C (marine)- Reference 11
Lead	μg/L	4.4	Table 1C (marine)- Reference 11
Nickel	μg/L	7	Table 1C (marine)- Reference 11
Zinc	µg/L	15	Table 1C (marine)- Reference 11
Mercury (inorganic)	μg/L	0.1	Table 1C (marine)- Reference 11
	-	omatic Hydrocarbons	
Naphthalene	μg/L	50	Table 1C (marine)- Reference 11
Anthracene	µg/∟ µg/L	0.4	Reference 13
Phenanthrene	µg/∟ µg/L	2	Reference 13
	_	1.4	Reference 13
Fluoranthene Benzo(a)pyrene	µg/L	0.2	Reference 13 Reference 13
Berizo(a)pyrene	µg/L		
(E1) C6 C10	1	leum Hydrocarbons (* 1,000 ²	
(F1) C6 – C10	µg/L		Table 1A(4) - Reference 11
(F2) >C10 - C16	µg/L	1,000 ²	Table 1A(4) - Reference 11
(F3) > C16 - C34	µg/L		
(F4) >C34 – C40	µg/L		
Demonstra		VOC - BTEX	Table 40 (marine) Deferring 44
Benzene	µg/L	500	Table 1C (marine)- Reference 11
	µg/L	180	Reference 13 (fresh)
Ethylbenzene	µg/L	5	Reference 13 (marine)
para-Xylene	µg/L	200	Table 1C (fresh) - Reference 11
ortho-Xylene	µg/L	350	Table 1C (fresh) - Reference 11
VOC - Sulfur Compounds	I		
Carbon disulfide	µg/L	20	Reference 13
VOC - Fumigants	r.		
1.2-Dichloropropane	µg/L	900	Reference 13
VOC - Halogenated Al	iphatic Compo	unds	
1.1.1-Trichloroethane	µg/L	270	Reference 13
Carbon Tetrachloride	µg/L	240	Reference 13
1.2-Dichloroethane	µg/L	1900	Reference 13
1.1.2-Trichloroethane	µg/L	1900	Table 1C (marine)- Reference 11
1.3-Dichloropropane	µg/L	1100	Reference 13
1.1.2.2-Tetrachloroethane	µg/L	400	Reference 13
Pentachloroethane	μg/L	80	Reference 13
VOC - Halogenated Ar		unds	
1.2.3-Trichlorobenzene	µg/L	3	Reference 13
VOC - Trihalomethanes			
Chloroform	µg/L	370	Reference 13
VOC - Chlorinated Hydrocarbons			·
1.2-Dichlorobenzene	µg/L	160	Table 1C (fresh) - Reference 11
1.3-Dichlorobenzene	µg/L	260	Table 1C (fresh) - Reference 11
1.4-Dichlorobenzene	µg/∟	60	Table 1C (fresh) - Reference 11
1.2.3-Trichlorobenzene	μg/L	3	Table 1C (fresh)- Reference 11
	r9'-		

	1.0		
1.2.4-Trichlorobenzene	μg/L	20	Table 1C (marine)- Reference 11
Hexachlorobutadiene	μg/L	0.03	Reference 13
Hexachlorocyclopentadiene	µg/L	0.05	Reference 13
Pentachlorobenzene	μg/L	1.5	Reference 13
Hexachlorobenzene (HCB)	μg/L	0.05	Reference 13
Notoci			

Notes:

¹ Criteria shown in italics are low reliability trigger values used a a first pass assessment in the absence of more reliable trigger values.

² Criteria depends on the type of soil and depth of sample. Criteria adopted is for sandy soil which is the most conservative and residential apartment buildings (HSL-B).

9 ANALYTICAL RESULTS

9.1 SOIL SAMPLES

GEE submitted a total of 69 soil samples from the 28 boreholes to Envirolab for laboratory analysis to facilitate assessment of site suitability. A copy of the laboratory reports is provided in **Appendix L**, while a summary of the results is provided in **Table 7** and discussed in the following sections.

9.1.1 Metals

A total of 59 samples were analysed during this investigation for arsenic, cadmium, chromium, copper, nickel, zinc and mercury while 68 samples were analysed for lead.

From all the metal analytical results there was one sample (SM060114-93 from BH26 between 0.15 and 0.3m depth) which contained a concentration of lead of 6000mg/kg which exceeds the health-based SAC of 1,200 mg/kg. Three separate sub-samples taken from the same sample jar were also analysed for lead and the results were 1700mg/kg, 2400mg/kg and 3900mg/kg which equates to an average lead concentration of 3500mg/kg.

Additionally, there were six samples (SM161213-04, SM161213-44, SM161213-81, SM171213-74, SM171213-90 and SM060114-93) containing concentrations of copper, nickel lead and/or zinc above the ecological SAC which are used to screen the analytical results. GEE notes that the ecological SAC provided in **Table 8** are considered to be 'first pass' values used for screening the analytical results. In the case of copper, nickel and zinc, the ecological criteria is dependent on the CEC and/or pH of each sample and a conservative number (based on a relatively low CEC and pH) was used as the 'first pass' criteria. When using the actual CEC and pH values for each of these samples the actual ecological SAC increases significantly as shown below:

Sample ID	Location	Depth	Sample	'First Pass'	Actual
			Concentration	Ecological SAC	Ecological SAC
SM161213-04	BH2	0.1 – 0.25	Nickel (110mg/kg)	40mg/kg	340mg/kg
SM161213-44	BH7	0.0 – 0.2	Zinc (270mg/kg)	210mg/kg	390mg/kg
SM161213-81	BH11	0.0 – 0.15	Zinc (280mg/kg)	210mg/kg	510mg/kg
SM171213-74	BH15	0.1 – 0.2	Copper (110mg/kg)	100mg/kg	220mg/kg
			Nickel (48mg/kg)	40mg/kg	240mg/kg
			Zinc (1500mg/kg)	210mg/kg	670mg/kg
SM171213-90	BH19	1.0 – 1.2	Zinc (230mg/kg)	210mg/kg	1,000mg/kg
SM060114-93	BH26	0.15 – 0.3	Lead (6000mg/kg)	1,200mg/kg	1,200mg/kg

As shown above only the lead concentration within sample SM060114-93 (BH26 between 0.15 and 0.3m depth) and the Zinc within sample SM1712-13-74 (BH15 between 0.1-0.2m depth) exceeded the actual ecological SAC. As previously mentioned the lead concentration within the same sample (SM060114-93) also exceeded the health-based SAC.

9.1.2 TRH and BTEX

A total of 41 samples were selected for TRH and BTEX analysis and each sample and the concentrations for each sample were less than the adopted health and ecological SAC. Additionally, BTEX were not detected above the laboratory Limit of Reporting (LOR⁵) and TRH was only detected above the laboratory LOR in one sample (SM060114-81 - TRH C16-C34 at 160mg/kg).

On the basis of the soil analytical results, and the fact that there was no obvious hydrocarbon odour noted during the fieldwork, GEE considers that TRH and BTEX does not to pose a widespread contamination issue at the site. However, assuming the USTs still exist in the south-western corner of the site, additional assessment is recommended as part of future re-development works when they are removed.

 $^{^{5}}$ Both the LOR and PQL are interchangeable terms used by laboratories and is defined as the lowest concentration that can be reliably achieved within specific limits of precision and accuracy during routine laboratory operating conditions (Popek, 2003 – reference 15).

9.1.3 PAHs

A total of 30 soil samples were analysed for PAHs and the concentrations of total PAHs and benzo(a)pyrene (herein refered to as 'B(a)P') in all samples were less than the health-based SAC. However, one sample (SM161213-22 - BH4 at 0.15-0.3m depth) contained a concentration of B(a)P of 1.3mg/kg which exceeded the ecological SAC of 0.7mg/kg.

9.1.4 OCPs and PCBs

Eleven near surface soil samples were analysed for OCPs and PCBs. The concentrations of all OCPs and PCBs were less than the adopted health and ecological SAC and the laboratory LOR. When combined with the site's history, these results indicate that OCPs and PCBs are not a contamination issue at the site.

9.1.5 Asbestos

The presence of asbestos fibres was inspected in eleven near-surface soil samples which are most likely to be impacted by asbestos. Asbestos fibres were not detected in each of the eleven samples. Combined with the fact that fragments of asbestos containing products, were not observed in the soils during the fieldwork, GEE considers that asbestos is not a soil contamination issue on the site. However, some buildings are clad with asbestos containing materials and should be managed appropriately during the demolition phase of the proposed redevelopment works.

Table 8: Summary of Analytical Results (BH1 to BH6)

		3-01	-02	-03	-04	3-05	13-06	-10	-12	-13	-22	-23	-25	13-33	-34	-35	13-39	13-41	-42		ceptance iteria
Sample		SM161213	SM161213-02	SM161213-03	SM161213-04	SM161213	SM161213	SM161213	SM161213-12	SM161213-	SM161213-	SM161213-23	SM161213-	SM161213	SM161213-34	SM161213-35	SM161213	SM161213	SM161213-42	Health	Ecologica ecologica Sudo L
	Location	BH1	BH1	BH1	BH2	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH4	BH5	BH5	BH5	BH6	BH6	BH6	Setti	t Open
Analyte	Depth	0.1-0.4	0.4–1.1	Blind	0.1– 0.25	0.7–0.8	0.9–1.0	0.1-0.2	1.2-1.4	1.8-2.0	0.15-0.3	0.4-0.6	2.0-2.5	0.14-0.2	0.2-0.6	0.6-0.8	0.2-0.35	1.3-1.5	2.3-2.5	:xposure Setting I (Residential)	Residential &
	Туре	Fill	Clay	Rep. of '02'	Fill	Fill	Clay	Fill	Clay	Shale	Fill	Clay	Shale	Fill	Fill	Clay	Fill	Fill	Shale	Û	Resid
Asbestos			·	-	-				•			-	·			-	-		-		
Asbestos Detected	-							No			No									0.04%	
Respirable Fibres	-							No			No									0.001%	-
Metals																					
Arsenic	mg/kg	5	7	<4	<4	<4	15	7			9	6		<4			7			500	100
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4			<0.4	<0.4		<0.4			<0.4			150	
Chromium	mg/kg	15	13	9	19	3	26	20			17	11		3			13			500	410
Copper	mg/kg	47	20	19	65	14	8	25			35	29		14			15			30,000	100
Lead	mg/kg	39	13	14	4	5	27	48	11	26	60	12	24	180	78		59	22	10	1,200	1,100
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	<0.1		<0.1			<0.1			120	
Nickel	mg/kg	32	2	1	110	12	2	7			6	3		1			2			1,200	40
Zinc	mg/kg	72	10	9	40	16	36	33			42	22		140			120			60,000	210
PAHs																					
Naphthalene	mg/kg				<0.1	<0.1	<0.1	<0.1			<0.1									3	170
Benzo(a)pyrene	mg/kg				<0.05	<0.05	<0.05	0.19			1.3										0.7
Benzo(a)pyrene TEQ	mg/kg				<0.5	<0.5	<0.5	<0.5			2									4	
Total PAHs	mg/kg				<0.2	<0.2	<0.2	1.5			12									400	
BTEX																					
Benzene	mg/kg				<0.2			<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	<0.2	<0.2	<0.2	<0.2	0.5	50
Toluene	mg/kg				<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5	<0.5	<0.5	160	85
Ethylbenzene	mg/kg				<1			<1	<1	<1	<1	<1	<1		<1	<1	<1	<1	<1	55	70
Total Xylenes	mg/kg				<2			<2	<2	<2	<2	<2	<2		<2	<2	<2	<2	<2	40	45
TRH																					
vTPH C ₆ - C ₁₀ (F1)	mg/kg				<25			<25	<25	<25	<25	<25	<25		<25	<25	<25	<25	<25	45	180
TRH >C ₁₀ - C ₁₆	mg/kg				<50			<50	<50	<50	<50	<50	<50		<50	<50	<50	<50	<50	110	120
TRH >C ₁₆ -C ₃₄	mg/kg				<100			<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	<100	2,500	300
TRH >C ₃₄ -C ₄₀	mg/kg				<100			<100	<100	<100	<100	<100	<100		<100	<100	<100	<100	<100	10,000	2,800

TABLE 8 NOTEs:

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found

Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

Table 8 (Continued): Summary of Analytical Results (BH1 to BH6)

		3-01	3-02	3-03	3-04	3-05	3-06	3-10	3-12	3-13	3-22	3-23	3-25	3-33	3-34	3-35	3-39	3-41	3-42	Cr	ceptance iteria
Sample		121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	121	Health	Ecological
		SM161	SM161213	SM161213	SM16121	SM1612	SM161213-06	SM161213	SM161213	SM161213-	SM161213	SM161213-23	SM1612	SM161213-33	SM161213	SM161213-35	SM161213-	SM161213-	SM161213	posure Setting B (Residential)	open S
	Location	BH1	BH1	BH1	BH2	BH2	BH2	BH3	BH3	BH3	BH4	BH4	BH4	BH5	BH5	BH5	BH6	BH6	BH6	e Se iden	tial 8 pace
Analyte	Depth	0.1-0.4	0.4–1.1	Blind Rep. of	0.1– 0.25	0.7–0.8	0.9–1.0	0.1-0.2	1.2-1.4	1.8-2.0	0.15-0.3	0.4-0.6	2.0-2.5	0.14-0.2	0.2-0.6	0.6-0.8	0.2-0.35	1.3-1.5	2.3-2.5	kposur (Res	Residential & (Space
	Туре	Fill	Clay	`02'	Fill	Fill	Clay	Fill	Clay	Shale	Fill	Clay	Shale	Fill	Fill	Clay	Fill	Fill	Shale	Ш Ш	Å
OCPs																			-		
Heptachlor	mg/kg	<0.1						<0.1												10	
Aldrin	mg/kg	<0.1						<0.1												10	
Dieldrin	mg/kg	<0.1						<0.1												TO	
Endrin	mg/kg	<0.1						<0.1												20	
gamma-Chlordane	mg/kg	<0.1						<0.1												90	
alpha-chlordane	mg/kg	<0.1						<0.1												90	
Endosulfan I	mg/kg	<0.1						<0.1												400	
Endosulfan II	mg/kg	<0.1						<0.1												400	
HCB	mg/kg	<0.1						<0.1												15	
Methoxychlor	mg/kg	<0.1						<0.1												500	
pp-DDE	mg/kg	<0.1						<0.1													
pp-DDD	mg/kg	<0.1						<0.1												600	180
pp-DDT	mg/kg	<0.1						<0.1													
Total PCBs																					
PCBs	mg/kg	<0.1						<0.1												1	

TABLE 8 NOTEs:

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as **shaded** text. No exceedances found

Table 8 (Continued): Summary of Analytical Results (BH7 to BH13)

		-44	-45	-47	-48	-49	-16	-17	-20	-27	-28	-30	-50	.3-51	-52	-55	-81	-60	-62	-63	-64	-65		ceptance iteria
Sample		1213 [.]	1213-	1213.	1213 [.]	1213	1213 [.]	Health	Ecologica															
		SM1612:	SM161213-45	SM161213-47	SM161213-48	SM161213	SM161213-	SM1612	SM161213-20	SM161213-27	SM161213-28	SM161213-30	SM161213-50	SM161213	SM161213-52	SM161213-55	SM171213-81	SM171213-60	SM171213-62	SM171213-63	SM171213-64	SM171213-65	tting B ial)	ia
	Location	BH7	BH7	BH7	BH7	BH7	BH8	BH8	BH8	BH9	BH9	BH9	BH10	BH10	BH10	BH10	BH11	BH12	BH12	BH12	BH13	BH13	e Se ident	Residential
Analyte	Depth	0.0- 0.2	0.3- 0.5	2.5- 2.8	Split Dupl. of	3.0- 3.5	0.2- 0.4	Blind Replicate	2.3-2.55	0.15- 0.2	0.2- 0.35	1.1- 1.2	0.2- 0.3	0.3- 0.5	0.5-0.7	4.5- 5.0	0.0- 0.15	0.1- 0.15	0.6- 0.8	1.4- 1.5	0.2- 0.4	Blind Replicate	xposure Setting I (Residential)	Resi
	Туре	Fill	Fill	Fill	`47'	Shale	Fill	of `16'	Fill	Fill	Fill	Clay	Fill	Fill	Clay	Shale	Fill	Fill	Clay	Shale	Fill	of '64'	ш	
Asbestos					-	÷		-	-		-		-	-	·					•	·	-		
Asbestos Detected	-						No			No									No				0.04%	
Respirable Fibres	-						No			No									No				0.001%	
Metals			÷		-	÷		-					-		÷	·		•			÷			
Arsenic	mg/kg	<4		<4	3.5		5	5	7	<4	9		<4	10	8	7	23	<4	7	8	<4	4	500	100
Cadmium	mg/kg	<0.4		<0.4	<0.4		<0.4	<0.4	<0.4	<0.4	<0.4		<0.4	<0.4	<0.4	0.9	0.8	<0.4	<0.4	<0.4	<0.4	<0.4	150	
Chromium	mg/kg	21		5	<5		3	2	9	2	20		2	19	23	9	17	30	8	9	2	3	500	410
Copper	mg/kg	56		7	<5		<1	<1	40	29	77		3	17	22	37	170	38	15	30	22	32	30,000	100
Lead	mg/kg	310	14	35	39	17	3	2	13	3	110	17	9	43	17	15	450	72	22	15	1	2	1,200	1,100
Mercury	mg/kg	<0.1		<0.1	<0.05		<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	<0.1	<0.1	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	120	
Nickel	mg/kg	10		3	<5		1	1	12	1	7		<1	4	2	30	15	51	6	2	1	2	1,200	40
Zinc	mg/kg	270		85	89		6	4	84	5	66		79	74	9	180	280	69	28	12	5	6	60,000	210
PAHs																								
Naphthalene	mg/kg			<0.1	<0.5		<0.1	<0.1		<0.1			<0.1	<0.1			<0.1		<0.1		<0.1		3	170
Benzo(a)pyrene	mg/kg			<0.05	<0.5		<0.05	<0.05		<0.05			<0.05	<0.05			0.34		<0.05		<0.05			0.7
Benzo(a)pyrene TEQ	mg/kg			<0.5	<0.5		<0.5	<0.5		<0.5			<0.5	<0.5			<0.5		<0.5		<0.5		4	
Total PAHs	mg/kg			<0.2	<0.5		<0.2	<0.2		<0.2			0.4	<0.2			3.1		<0.2		<0.2		400	
BTEX												•	-											
Benzene	mg/kg		<0.2	<0.2	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			<0.2		<0.2		<0.2	<0.2	0.5	50
Toluene	mg/kg		<0.5	<0.5	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			<0.5		<0.5		<0.5	<0.5	160	85
Ethylbenzene	mg/kg		<1	<1	<0.1	<1	<1	<1	<1	<1	<1	<1	<1	<1			<1		<1		<1	<1	55	70
Total Xylenes	mg/kg		<2	<2	<0.3	<2	<2	<2	<2	<2	<2	<2	<2	<2			<2		<2		<2	<2	40	45
TRH																								
vTPH C ₆ - C ₁₀ (F1)	mg/kg		<25	<25	<20	<25	<25	<25	<25	<25	<25	<25	<25	<25			<25		<25		<25	<25	45	180
TRH >C ₁₀ - C ₁₆	mg/kg		<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50			<50		<50		<50	<50	110	120
TRH >C ₁₆ -C ₃₄	mg/kg		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100			<100		<100		<100	<100	2,500	300
TRH >C ₃₄ -C ₄₀	mg/kg		<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100			<100		<100		<100	<100	10,000	2,800

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found

Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

Table 8 (Continued): Summary of Analytical Results (BH7 to BH13)

		13-44	:13-45	13-47	13-48	:13-49	:13-16	:13-17	:13-20	:13-27	13-28	:13-30	:13-50	13-51	:13-52	:13-55	:13-81	13-60	:13-62	:13-63	:13-64	:13-65		cceptance iteria Ecological
Sample		SM161213	SM161213-	SM161213-47	SM161213-	SM161213-49	SM161213-16	SM161213	SM161213-20	SM161213-27	SM161213-28	SM161213-30	SM161213-50	SM161213-51	SM161213-52	SM161213-55	SM171213-81	SM171213-60	SM171213-62	SM171213-63	SM171213-64	SM171213-65	tting B ial)	
	Location	BH7	BH7	BH7	BH7	BH7	BH8	BH8	BH8	BH9	BH9	BH9	BH10	BH10	BH10	BH10	BH11	BH12	BH12	BH12	BH13	BH13	e Se ident	Residential
Analyte	Depth	0.0- 0.2	0.3- 0.5	2.5- 2.8	Split Dupl. of	3.0- 3.5	0.2- 0.4	Blind Replicate	2.3-2.55	0.15- 0.2	0.2- 0.35	1.1- 1.2	0.2-0.3	0.3-0.5	0.5- 0.7	4.5- 5.0	0.0- 0.15	0.1- 0.15	0.6-0.8	1.4- 1.5	0.2- 0.4	Blind Replicate	Exposure Setting E (Residential)	Res
	Туре	Fill	Fill	Fill	`47′	Shale	Fill	of `16'	Fill	Fill	Fill	Clay	Fill	Fill	Clay	Shale	Fill	Fill	Clay	Shale	Fill	of '64'	ш	
OCPs																								
Heptachlor	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		10	
Aldrin	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		10	
Dieldrin	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		TO	
Endrin	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		20	
gamma- Chlordane	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		90	
alpha-chlordane	mg/kg						< 0.1	<0.1					<0.1				<0.1				<0.1			
Endosulfan I	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		400	
Endosulfan II	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		400	
HCB	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		15	
Methoxychlor	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		500	
pp-DDE	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1			
pp-DDD	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		600	180
pp-DDT	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1			
Total PCBs																								
PCBs	mg/kg						<0.1	<0.1					<0.1				<0.1				<0.1		1	

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found

Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

Table 8 (Continued): Summary of Analytical Results (BH14 to BH20)

		-67	-68	-74	-75	-76	-72	-73	-78	-79	83	-84	-87	88	-89	06-	-92	-93	94	-95	96	-97		ceptance teria
Sample		213-	213-	213-	<u> </u>	213-	213-	213-	213-	213-	213-	213-	213-	213-	213-	213-	213-	e	213-	213-	213-	213-	Health	Ecologic
Sample		SM17121	SM171213-68	SM171213-74	SM17121	SM171213-76	SM171213-72	SM171213-7	SM171213-78	SM171213	SM171213-83	SM171213-84	SM171213	SM171213-88	SM171213-89	SM171213-90	SM171213	SM17121	SM171213-94	SM171213-95	SM171213-96	SM171213-97	ting B al)	al
	Location	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH17	BH17	BH18	BH18	BH19	BH19	BH19	BH19	BH19	BH20	BH20	BH20	BH20	BH20	e Set denti	Residential
Analyte	Depth	0.25- 0.4	0.5- 0.7	0.1- 0.2	0.3- 0.5	0.9- 1.1	0.2- 0.3	Split Dupl.	0.15- 0.3	0.5- 0.7	0.1- 0.2	0.2- 0.3	0.2-0.3	Split Dupl. of	0.3- 0.5	1.0- 1.2	1.3- 1.5	Blind Repl. of	0.35- 0.5	1.0- 1.1	1.3- 1.45	2.0- 2.3	Exposure Setting I (Residential)	Resi
	Туре	Fill	Clay	Fill	Fill	Clay	Fill	of `72'	Fill	Clay	Fill	Fill	Fill	`87'	Fill	Fill	Shale	`92'	Fill	Fill	Clay	Shale	Ш́	
Asbestos																								
Asbestos Detected	-	No					No					No											0.04%	
Respirable Fibres	-	No					No					No											0.001%	
Metals																								
Arsenic	mg/kg	7	<4	8	6	5	<4	4	<4	9	<4	11	5	5.2	6	8	<4	<4	6	7	<4	6	500	100
Cadmium	mg/kg	<0.4	<0.4	4.3	<0.4	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	150	
Chromium	mg/kg	15	8	50	21	9	17	24	12	24	3	21	3	<5	47	18	2	2	12	15	6	10	500	410
Copper	mg/kg	15	18	110	29	22	4	<5	32	22	21	35	4	<5	25	20	1	<1	41	27	16	31	30,000	100
Lead	mg/kg	26	11	590	22	27	130	230	43	18	19	160	<1	<5	320	520	4	4	230	75	8	11	1,200	1,10
Mercury	mg/kg	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	0.07	0.1	<0.1	<0.1	0.6	<0.1	<0.05	0.2	0.2	<0.1	<0.1	0.4	0.1	0.2	<0.1	120	
Nickel	mg/kg	3	2	48	3	2	1	<5	6	4	2	5	1	<5	32	6	1	1	9	6	3	5	1,200	40
Zinc	mg/kg	28	13	1500	19	20	25	39	66	15	93	100	2	<5	190	230	7	5	200	91	25	44	60,000	210
PAHs				-																	-	•		
Naphthalene	mg/kg	<0.1	<0.1		<0.1	<0.1	<0.1					<0.1	<0.1	<0.5			<0.1	<0.1					3	170
Benzo(a)pyrene	mg/kg	0.1	<0.05		<0.05	<0.05	<0.05					0.39	<0.05	<0.5			<0.05	<0.05						0.7
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5		<0.5	<0.5	<0.5					1	<0.5	<0.5			<0.5	<0.5					4	
Total PAHs	mg/kg	0.44	<0.2		<0.2	<0.2	<0.2					3.4	<0.2	<0.5			0.35	<0.2					400	
BTEX			•	-		•					-		· · · ·		•			-	•	-		-		
Benzene	mg/kg	<0.2			<0.2		<0.2					<0.2	<0.2	<0.1			<0.2	<0.2					0.5	50
Toluene	mg/kg	<0.5			<0.5		<0.5					<0.5	<0.5	<0.1			<0.5	<0.5					160	85
Ethylbenzene	mg/kg	<1			<1		<1					<1	<1	<0.1			<1	<1					55	70
Total Xylenes	mg/kg	<2			<2		<2					<2	<2	<0.3			<2	<2					40	45
TRH																								
	mg/kg	<25			<25		<25					<25	<25	<20			<25	<25					45	180
VIPH $C_6 - C_{10}$ (FI)					<50		<50					<50	<50	<50			<50	<50					110	120
TRH > C_{10} (F1) TRH > C_{10} - C_{16}	mg/kg	<50			10																			
vTPH $C_6 - C_{10}$ (F1) TRH > $C_{10} - C_{16}$ TRH > C_{16} - C_{34}	mg/kg mg/kg	<50 <100			<100		<100					<100	<100	<100			<100	<100					2,500	300

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found

Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

		3-67	3-68	3-74	3-75	3-76	3-72	3-73	3-78	3-79	3-83	13-84	3-87	3-88	3-89	3-90	3-92	3-93	3-94	3-95	3-96	3-97	Site Ac Cr	cceptance riteria
Sample		213	213	21	213		21	-213	-213		21	213		213	21	21	21	213	213	213	21	213	Health	Ecological
campie		SM171213-67	SM171213	SM171	SM171.	SM1712:	SM171	SM171213	SM17121	SM1712:	SM171	SM1712	SM1712	SM171	SM171.	SM171	SM171	SM171213	SM171213-94	SM171213-95	SM171	SM171213-97	etting B tial)	tial
	Location	BH14	BH14	BH15	BH15	BH15	BH16	BH16	BH17	BH17	BH18	BH18	BH19	BH19	BH19	BH19	BH19	BH20	BH20	BH20	BH20	BH20	e Se iden	Residential
Analyte	Depth	0.25- 0.4	0.5- 0.7	0.1- 0.2	0.3- 0.5	0.9- 1.1	0.2- 0.3	Split Dup. of	0.15- 0.3	0.5- 0.7	0.1- 0.2	0.2- 0.3	0.2-0.3	Split Dup. of	0.3- 0.5	1.0- 1.2	1.3- 1.5	Blind Rep. of	0.35- 0.5	1.0- 1.1	1.3- 1.45	2.0- 2.3	Exposure Setting [(Residential)	Resi
	Туре	Fill	Clay	Fill	Fill	Clay	Fill	`72'	Fill	Clay	Fill	Fill	Fill	`87′	Fill	Fill	Shale	`92′	Fill	Fill	Clay	Shale	ш	
OCPs																								
Heptachlor	mg/kg												<0.1	<0.05			<0.1						10	
Aldrin	mg/kg												<0.1	< 0.05			<0.1						10	
Dieldrin	mg/kg												<0.1	<0.05			<0.1						TO	
Endrin	mg/kg												<0.1	<0.05			<0.1						20	
gamma-Chlordane	mg/kg												<0.1	<0.1			<0.1						90	
alpha-chlordane	mg/kg												<0.1				<0.1						90	
Endosulfan I	mg/kg												<0.1	<0.05			<0.1						400	
Endosulfan II	mg/kg												<0.1	<0.05			<0.1						400	
НСВ	mg/kg												<0.1	<0.05			<0.1						15	
Methoxychlor	mg/kg												<0.1	<0.05			<0.1						500	
pp-DDE	mg/kg												<0.1	<0.05			<0.1							
pp-DDD	mg/kg												<0.1	<0.05			<0.1						600	180
pp-DDT	mg/kg												<0.1	<0.05			<0.1							
Total PCBs																								
PCBs	mg/kg												<0.1	<0.5			<0.1						1	

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

Table 8 (Continued): Summary of Analytical Results (BH21 to BH28)

		-80	-81	-82	14-83	-84	-85	14-86	-87	-89	06-	-91	-92	-93	-94	-95	-96	-98	66-	100		ceptance teria
Comple		114.	114-	114	114	114	114	114	114.	114-	114	114	114	114	114-	114	114	114-	114	-14-	Health	Ecological
Sample		SM060114-80	SM060114-81	SM060114-82	SM0601.	SM060114-84	SM060114-85	SM0601	SM060114-87	SM060114-89	SM060114-90	SM060114-91	SM060114-92	SM060114-93	SM060114-94	SM060114-95	SM060114-96	SM060114-98	SM060114-99	SM060114-100	tting B ial)	iai
	Location	BH21	BH22	BH22	BH23	BH23	BH23	BH23	BH24	BH24	BH25	BH25	BH25	BH26	BH26	BH26	BH27	BH27	BH28	BH28	e Sel denti	denti
Analyte	Depth	0.2-0.4	0.2-0.4	Blind Rep. of	0.2-0.4	0.6-0.8	Split Dup. of	0.9-1.1	0.1-0.25	0.3-0.5	0.2- 0.4	Split Dup. of	0.4- 0.55	0.15- 0.3	0.5- 0.6	0.6- 0.8	0.2- 0.4	0.5- 0.7	0.2- 0.3	0.3- 0.5	Exposure Setting F (Residential)	Residential
	Туре	Fill	Fill	'81'	Fill	Fill	`84'	Clay	Fill	Fill	Fill	`90'	Clay	Fill	Fill	Clay	Clay	Clay	Fill	Clay	ш	
Asbestos						·		-	-				-	•	-							
Asbestos Detected	-		No								No						No				0.04%	
Respirable Fibres	-		No								No						No				0.001%	
Metals																						
Arsenic	mg/kg	4	<4	<4	<4	8	4.6	9	5	5	7	6.2	<4	<4	7	9	<4	6	7	6	500	100
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	150	
Chromium	mg/kg	50	5	4	6	18	15	20	2	10	5	6.1	5	180	29	21	9	16	11	11	500	410
Copper	mg/kg	15	33	49	18	23	23	19	5	12	18	18	13	45	29	20	13	23	26	32	30,000	100
Lead	mg/kg	11	220	180	10	45	31	14	<1	320	14	14	6	<mark>6000</mark>	350	35	16	16	14	13	1,200	1,100
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	120	
Nickel	mg/kg	37	3	3	1	5	<5	2	<1	4	1	<5	2	7	6	3	4	3	2	2	1,200	40
Zinc	mg/kg	27	10	16	17	120	100	15	2	150	11	15	13	120	110	15	11	21	24	26	60,000	210
PAHs																						
Naphthalene	mg/kg	<1	<1	<1		<1	<0.5	<1		<1	<1			<1			<1	<1	<1		3	170
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05		0.22	<0.5	<0.05			<0.05			0.45			<0.05	<0.05	<0.05			0.7
Benzo(a)pyrene TEQ	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.5	<0.5			<0.5			1			<0.5	<0.5	<0.5		4	
Total PAHs	mg/kg	<0.2	<0.2	<0.2		2.3	<0.5	<0.2			<0.2			4.8			<0.2	<0.2	<0.2		400	
BTEX								-	-				-			-						
Benzene	mg/kg	<0.2	<0.2	<0.2		<0.2	<0.1	<0.2		<0.2	<0.2			<0.2			<0.2	<0.2	<0.2		0.5	50
Toluene	mg/kg	<0.5	<0.5	<0.5		<0.5	<0.1	<0.5		<0.5	<0.5			<0.5			<0.5	<0.5	<0.5		160	85
Ethylbenzene	mg/kg	<1	<1	<1		<1	<0.1	<1		<1	<1			<1			<1	<1	<1		55	70
Total Xylenes	mg/kg	<2	<2	<2		<2	<0.3	<2		<2	<2			<2			<2	<2	<2		40	45
TRH																						
vTPH C ₆ - C ₁₀ (F1)	mg/kg	<25	<25	<25		<25	<20	<25		<25	<25			<25			<25	<25	<25		45	180
TRH >C ₁₀ - C ₁₆	mg/kg	<50	<50	<50		<50	<50	<50		<50	<50			<50			<50	<50	<50		110	120
TRH >C ₁₆ -C ₃₄	mg/kg	<100	160	110		<100	<100	<100		<100	<100			<100			<100	<100	<100		2,500	300
	mg/kg	<100	<100	<100		<100	<100	<100		<100	<100			<100			<100	<100	<100		10,000	2,800

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found

Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found

Table 8 (Continued): Summary of Analy	tical Results (BH21 to BH28)
---------------------------------------	------------------------------

		14-80	14-81	14-82	14-83	14-84	14-85	14-86	14-87	14-89	14-90	14-91	14-92	14-93	14-94	14-95	14-96	14-98	14-99	4-100		iteria Ecological
Sample		SM060114-80	SM060114-81	SM060114-82	SM060114-83	SM060114-84	SM060114-85	SM060114-86	SM060114-	SM060114-89	SM060114-90	SM060114-91	SM0601	SM060114-93	SM060114-94	SM06011	SM060114-96	SM060114-98	SM060114-99	SM060114-100	~	
	Location	BH21	BH22	BH22	BH23	BH23	BH23	BH23	BH24	BH24	BH25	BH25	BH25	BH26	BH26	BH26	BH27	BH27	BH28	BH28	e Se iden	Residential
Analyte	Depth	0.2-0.4	0.2-0.4	Blind Rep. of	0.2-0.4	0.6-0.8	Split Duplicate	0.9-1.1	0.1-0.25	0.3-0.5	0.2- 0.4	Split Duplicate	0.4- 0.55	0.15- 0.3	0.5- 0.6	0.6- 0.8	0.2- 0.4	0.5- 0.7	0.2- 0.3	0.3- 0.5	Exposure Setting E (Residential)	Res
	Туре	Fill	Fill	'81'	Fill	Fill	of `84'	Clay	Fill	Fill	Fill	of `90'	Clay	Fill	Fill	Clay	Clay	Clay	Fill	Clay	Ш	
OCPs																						
Heptachlor	mg/kg		<0.1						<0.1		<0.1								<0.1		10	
Aldrin	mg/kg		<0.1						<0.1		<0.1								<0.1		10	
Dieldrin	mg/kg		<0.1						<0.1		<0.1								<0.1		TO	
Endrin	mg/kg		<0.1						<0.1		<0.1								<0.1		20	
gamma-Chlordane	mg/kg		<0.1						<0.1		<0.1								<0.1		90	
alpha-chlordane	mg/kg		<0.1						<0.1		<0.1								<0.1		50	
Endosulfan I	mg/kg		<0.1						<0.1		<0.1								<0.1		400	
Endosulfan II	mg/kg		<0.1						<0.1		<0.1								<0.1			
HCB	mg/kg		<0.1						<0.1		<0.1								<0.1		15	
Methoxychlor	mg/kg		<0.1						<0.1		<0.1								<0.1		500	
pp-DDE	mg/kg		<0.1						<0.1		<0.1								<0.1			
pp-DDD	mg/kg		<0.1						<0.1		<0.1								<0.1		600	180
pp-DDT	mg/kg		<0.1						<0.1		<0.1								<0.1			
Total PCBs																						
PCBs	mg/kg		<0.1						<0.1		<0.1								<0.1		1	

Analytical results which exceed any of the Health-based Investigation Levels (HILs) are shown **bold** text. No exceedances found Analytical results which exceed any of the Ecological-based Investigation Levels (PILs) are shown as shaded text. No exceedances found 1 - Total Chromium analytical result includes chromium (III) and (VI).

E13017BEL-R01F

9.2 WATER FIELD PARAMETERS

The standing (or stabilised) water level was recorded in each well prior to purging and sampling and when compared to the surface elevations it was determined that groundwater is flowing in a north-westerly direction which is commensurate with the topography.

Field parameters (*i.e.* pH, electrical conductivity, dissolved oxygen, redox potential, temperature, odour and other notable observations) were recorded during the sampling of groundwater within each well.

A summary of the field parameter information, along with the standing water level readings, is provided in **Table 9**.

In each well the pH was approximately neutral and the electrical conductivity values were all relatively high, indicating brackish / saline water. The dissolved oxygen results were relatively low, which is common for groundwater.

TABLE 9: Groundwater Field Data Results

	Sampl	e Date	6/01/2014	6/01/2014	6/01/2014	6/01/2014	6/01/2014	6/01/2014
Sa	ample Identifi	cation	SM060114-104	SM060114-106	SM060114-107	SM060114-103	SM060114-105	SM060114-101/102
Analyte	Units	LOR	BH2	BH3	BH4	BH10	BH14	BH20
	m BTOC	0.01	3.47	3.81	3.77	3.37	3.93	3.87
Standing Water Level	m BGS	0.01	3.37	3.71	3.67	3.27	3.83	3.77
	m AHD	0.01	40.13	40.99	40.77	38.63	40.47	40.83
рH	pH units	0.01	7.75	6.37	6.87	6.85	6.17	6.82
Electrical Conductivity	µS/cm	0.01	18443	13701	14485	6520	13150	7510
Temperature	°c	0.1	21.5	21.7	21.8	22.7	23.0	21.4
Redox Potential	m V	1	65	60	62	63	63	6 4
Dissolved Oxygen	m g/L	0.01	2.78	1.81	1.75	2.19	2.8	2.4

9.3 WATER ANALYTICAL RESULTS

Groundwater that was collected from each well was analysed for dissolved metals, TRH, BTEX, PAHs and VOCs. The laboratory results are provided in the laboratory reports in **Appendix L**, while the tabulated results are provided in **Table 10** and summarised below.

9.3.1 Metals

With the exception of cadmium, chromium, copper, nickel and zinc, the concentration of dissolved metals in all samples was below the GILs. The concentrations of dissolved cadmium, chromium, copper, nickel and zinc were slightly higher than the GILs in some wells. GEE notes that the GILs presented in Table 7 are for soft water (<60 mg/L CaCo3) and the water in the wells was considered to be extremely hard (>240 mg/L). When adjusting the GILs for hardness (reference 11 and 13) only nickel and zinc in some wells exceeded the GILs. Further discussion about the significance of these exceedances is provided in Section 10.3.

9.3.2 TRH and BTEX

The concentration of TRH and BTEX in all wells was less than the laboratory LOR / PQL. This suggests that the groundwater is not a groundwater contamination issue at the site.

9.3.3 PAHs

PAH compounds were not detected in the groundwater indicating that PAHs are not a contamination issue for groundwater beneath the site.

9.3.4 VOCs (including BTEX)

VOCs were in the water sampled from each well were all less than the laboratory LOR / PQL. These results suggest that VOCs do not pose a contamination issue for groundwater beneath the site.

Sample Identifica			SM060114-104	SM060114-106	07	03) 5	5	02	
Sample Identifica		l	4	7	-					
Sample Identifica			4	, ,	4-1	4 -	4-10	4-1 0	4-1-	Groundwate
	ation		011,	011	011	011	011	011	011	Investigatior Levels (GILs)
			106(106(SM060114-107	SM060114-103	SM060114-105	SM060114-101	SM060114-102	
			S≤	S≤	S≤	SS	SS	SN	SZ	
Analyte	Units	LOR	BH2	BH3	BH4	BH10	BH14	BH20	Duplicate of 101	
				Di	ssolved Metal	S				
Arsenic	µg/L	1	3	<1	1	2	1	1	1	13
Cadmium	µg/L	0.1	2.6	5.6	1.7	0.7	5	1.3	1.3	0.7 / 7*
Chromium	µg/L	1	1	6	2	3	1	1	<1	4.4 / 37*
Copper	µg/L	1	4	2	5	6	2	1	1	1.3 / 11.7*
Lead	µg/L	1	2	<1	1	<1	<1	<1	<1	4.4 / 117*
Mercury	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.1
Nickel	μg/L	1	<mark>330</mark>	<mark>93</mark>	52	61	<mark>200</mark>	<mark>75</mark>	<mark>74</mark>	7 / 63*
Zinc	μg/L	1	<mark>850</mark>	320	<mark>140</mark>	<mark>210</mark>	<mark>190</mark>	<mark>150</mark>	<mark>150</mark>	15 / 135*
				Polycyclic	Aromatic Hyd	rocarbons				
Naphthalene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	50
Phenanthrene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	2
Anthracene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	0.4
Fluoranthene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	1.4
Benzo(a)pyrene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	0.2
Benzo(a)pyrene TEQ	µg/L	5	<5	<5	<5	<5	<5	<5	<5	
Total (+VE) PAHs	µg/L		Nil	Nil	Nil	Nil	Nil	Nil	Nil	
					BTEX					
Benzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	500
Toluene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	180
Ethylbenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	5
m+p-xylene	µg/L	2	<2	<2	<2	<2	<2	<2	<2	200
o-xylene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	350
	ļ			Total Pet	roleum Hydro	carbons				
TRH C6 - C9	µg/L	10	<10	<10	<10	<10	<10	<10	<10	1,000
TRH C10 - C14	µg/L	50	<50	<50	<50	<50	<50	<50	<50	1,000
TRH C15 - C28	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
TRH C29 - C36	µg/L	100	<100	<100	<100	<100	<100	<100	<100	
					VOCs					
1,2-dichloroethane	µg/L	1	<1	<1	<1	<1	<1	<1	<1	1900
1,1,1-trichloroethane	µg/L	1	<1	<1	<1	<1	<1	<1	<1	270
Carbon tetrachloride	µg/L	1	<1	<1	<1	<1	<1	<1	<1	240
Benzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	500
Trichloroethene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	900
1,1,2-trichloroethane	µg/L	1	<1	<1	<1	<1	<1	<1	<1	1900
Toluene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	1000
Ethylbenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	5
m+p-xylene	µg/L	2	<2	<2	<2	<2	<2	<2	<2	200
1,1,2,2-tetrachloroethane	µg/L	1	<1	<1	<1	<1	<1	<1	<1	400
o-xylene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	350
1,3-dichlorobenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	260
1,4-dichlorobenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	60
1,2-dichlorobenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	160
1,2,4-trichlorobenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	20
Hexachlorobutadiene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	0.03
1,2,3-trichlorobenzene	µg/L	1	<1	<1	<1	<1	<1	<1	<1	3
	µg/L		<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td><lor< td=""><td></td></lor<></td></lor<></td></lor<>	<lor< td=""><td><lor< td=""><td></td></lor<></td></lor<>	<lor< td=""><td></td></lor<>	
Remaining VOCs										

TABLE 10: Groundwater Analytical Results - Metals, PAHs TRH and VOC/BTEX

Notes:

Note 1: Criteria shown in *italics* are low reliable trigger values which were adopted as a first pass criteria in the absence of more reliable values

--- No Criteria Established

* The second number is the GIL when adjusted for the extremely hard water present (> 240mg CaCo3/L)

Results exceeding this criteria are shown in **bold** text

10 SITE CHARACTERISATION

A summary of the information obtained and results of this assessment is presented below.

10.1 SITE HISTORY AND POTENTIAL FOR CONTAMINATION

A review of the historical information indicates that the site has been operating as a shoe factory since approximately 1979. Before 1979 the majority of the site (*i*,*e*. lots 91, 1 and 2) was occupied by a clothing factory which commenced circa 1937.

Lot A, along the western boundary fronting Drummond Street, appears to have been used as a residential property since at least 1916 and this land-use has continued up until the time of this investigation. The final allotment which makes up the site (Lot B - in the south-western corner of the site) appeared to be a motor vehicle workshop and service station prior to being purchased by J. Robins & Sons Pty Ltd in circa 1980. The garage and/or service station was likely operated between approximately 1929 when Motor & Engineering Works Ltd purchased the allotment. The allotment was then owned by various individuals listed as being a '*garage proprietor'* before Caltex Oil (Australia) Pty Ltd owned the allotment between 1953 and 1979.

Based on GEE's knowledge of the site, including review of the site's history and physical and environmental setting, the main sources of potential contamination include:

- Past use of Lot B in the south-western corner as a motor garage and/or service station, including the storage and use of fuel in underground tanks. The use of fuel and/or oils have the potential to cause soil and groundwater contamination although the concrete pavements would have minimised any migration of fuel and/or oil contaminants from the surface into the soil profile and the migration of fuels and oils below ground would be restricted by the fact that the local soils in this part of Sydney are typically heavy, lowpermeable, clays.
- Past use of Lots 1 and 2 for shoe and clothing manufacturing which can include the use of chemicals such as polyurethane, glue and dyes. The use of chemicals on site may have resulted in a 'top down' spills or leaks in isolated locations across the site. Again, the concrete pavements would have

restricted the migration of chemicals into the soil profile and further downward migration of chemicals would be restricted by the fact that the local clay soils.

- Past storage of fuel (likely diesel or petrol) in a 2,200 L UST beneath the loading dock in the north-eastern corner. Like the USTs in the south-western corner any spills or leaks from the UST or associated infrastructure would be restricted by the concrete slab and/or the local soils in this part of Sydney are typically heavy and low-permeable.
- Vehicle access to parts of the site (particularly Lots 91, A and B) which could have resulted in 'top down' spills or leaks of oil or fuel in isolated locations across the site. The concrete and/or asphalt pavements in these areas would have minimised any migration of contaminants into the soil profile and the local clay soils would have restricted any further downward migration of contaminants.
- Past development of the site. With any site development works there is a possibility that fill material was used to raise site levels, or to create a level building platform. When sourced from an unknown origin, the quality of the fill is also unknown and potentially contaminated. Based on the regional topography (which was relatively flat) and the historical aerial photographs, it is considered unlikely that the site has been subjected to any substantial filling and therefore the risk of contaminated fill being present beneath the site is considered to be very low.

Overall, the potential for soil contamination is considered to be moderate to high, particularly in the vicinity of the former fuel storage infrastructure and the potential for groundwater contamination is considered to be low because groundwater in this part of Sydney is likely to be confined or partly confined within the underlying, relatively low permeable, shale formation.

10.2 SOIL ASSESSMENT

Soil conditions across the site were assessed at twenty eight borehole locations (BH1 to BH28) positioned across the site and targeting areas of potential contamination (in particular the service station in the south-western corner). The number of boreholes exceeds the minimum number of sampling points required for adequate site characterisation as defined by the EPA NSW and Australian Standards (reference 8 and 9).

The subsurface conditions encountered during the field investigations comprised a layer of fill material which was underlain by a natural clay soil which graded into shale bedrock. The depth of filling was typically between 0.15m and 1.3m bgs, although deeper sand fill was present in the vicinity of the USTs in the southwestern corner of the site. The depth to shale bedrock ranged from 0.75m to 2.2m bgs.

During the drilling of boreholes, there were no unusual odours (that could be potentially associated with contamination) noted. Additionally, no potentially Asbestos Containing Materials (ACM) was observed below ground during sampling and logging. Permanent groundwater was not encountered during the drilling of each borehole, however, groundwater seepage did eventually occur in the monitoring wells installed within bores BH2, BH3, BH4, BH10, BH14 and BH20.

GEE submitted a total of 69 soil samples from the 28 boreholes to Envirolab for NATA accredited laboratory analysis of metals (arsenic, cadmium, chromium, copper, nickel, lead, mercury and zinc), TRH, BTEX, PAHs, OCPs, PCBs and asbestos and the analytical results were compared against relevant set of SAC appropriate for the proposed residential land-use with minimal access to soil.

In summary, the only analytes to exceed the health and/or ecological SAC was:

- Lead within the fill layer at BH26 (sample SM060114-93 6000mg/kg) which exceeded the ecological and health based SAC. BH26 was 17m from the eastern boundary and 15m from the northern boundary of the factory, and
- ◊ B(a)P within the fill at BH4 (sample SM161213-22 1.3mg/kg) which exceeded the ecological SAC of 0.7mg/kg. BH4 was 2m from the western boundary and 4m from the southern boundary.

The lead concentration in sample SM060114-93 was re-analysed three times using new sub-samples from the same sample jar and the results were 1700mg/kg, 2400mg/kg and 3900mg/kg which equates to an average lead concentration of 3500mg/kg. The average concentration of lead was more than 2.5 times the health and ecological SAC and therefore is considered to be a 'hot-spot' of contamination which will need to be remediated and/or managed as part of the proposed redevelopment works.

The concentration of B(a)P in sample SM161213-22 only marginally exceeded the ecological SAC. The ecological SAC for B(a)P is a screening level, above which

will require further evaluation and consideration. Considering the urban environment in which the site lies, the existing land-use and the extent and type of the proposed development (particularly the fact that the site will be excavated to form a basement level), GEE considers that the elevated B(a)P concentration does not require specific remediation and can be managed appropriately as part of the proposed redevelopment work. This should include provision of a waste classification for the fill layer and disposal to an appropriately licenced landfill facility.

10.2.1 Waste Classification Estimates

At the request of the client and considering that it is proposed to excavate across the majority of the site to facilitate the construction of a basement, GEE has compared the analytical results from this investigation with the NSW EPA waste guidelines (reference 16) to provide an <u>estimate</u> of the waste classifications for the fill and natural soil profile. GEE stresses that these waste classifications are only estimates to allow earthworks contractors some confidence when quoting on the project and further testing of the fill layer will be necessary including leachate analysis using the Toxicity Characteristic Leaching Procedure (TCLP).

Based on the analytical results and findings from the fieldwork, the following waste classifications are likely to apply:

- Fill layer in the vicinity of BH23 which is impacted with lead up to 6000mg/kg. This portion of fill is expected to have a waste classification of 'Restricted Solid Waste' and GEE estimates a volume of waste of approximately 100m³.
- The remaining portion of the fill layer is likely to be classified as General solid waste (non-putrescible).
- The natural soil profile (including shale bedrock) is free of any contamination and is likely to have a classification of virgin excavated natural material (VENM) which is a sub-class of general solid waste (non-putrescible) which and can be re-used, rather than be disposed at a landfill. To ensure VENM classification the natural soil / bedrock must not be mixed with any fill material or other deleterious material. GEE recommends that all remediation work including removal of any USTs, the lead impacted soil at BH26 and remaining fill layer be removed from site before excavation and disposal of VENM.

10.3 GROUNDWATER ASSESSMENT

Groundwater conditions beneath the site were assessed using six monitoring wells installed within boreholes BH2, BH3, BH4, BH10, BH14 and BH20. Water within the wells was generally neutral in pH and high in conductivity indicating brackish / saline water. The standing (or stabilised) water level was recorded in each well prior to purging and sampling and when compared to the surface elevations it was determined that groundwater is flowing in a north-westerly direction which is commensurate with the topography.

To assess the presence of contamination within the groundwater beneath the site, water from each well was submitted to Envirolab for NATA accredited analysis of dissolved metals (arsenic, cadmium, chromium, copper, nickel, lead, zinc and mercury), TRH, BTEX, PAHs and VOCs. The analytical results were then compared against a set of groundwater investigation Levels (GILs) considered appropriate for the environmental setting of the site.

The concentrations of arsenic, cadmium, chromium, copper, lead, mercury, TRH, BTEX and PAHs conformed to the adopted GILs, while the concentrations of nickel and zinc in some wells exceeded the SAC. The metal exceedances are not considered to be significant because:

- The groundwater from the site was collected from a stratigraphy comprising shale and according Hem (1989 – reference 13), the concentrations of nickel and zinc are commensurate with naturally occurring background concentrations.
- The concentrations are consistent across the site (including the up-hydraulic gradient wells).
- No source of metal contamination was identified in the fill and natural soils across the site.
- The concentrations detected are commensurate with metal concentrations within the groundwater across the Sydney region.

11 CONCLUSION

Geo-Environmental Engineering Pty Ltd (GEE) was commissioned by City Alliance Property Pty Ltd, on behalf of WM Ritchie Properties Pty Ltd & Belmore 677 Pty Ltd, to undertake an assessment of potential site contamination at 677 - 687 Canterbury Road, Belmore, NSW. The assessment was required to support a development application with Canterbury City Council which relates to a multistorey, mixed-use (commercial / residential), building with basement level(s).

The investigation comprised a:

- Review of the site's history to provide an understanding of past and present site activities which in turn may indicate sources and areas of potential contamination as well as potential chemicals of concern,
- Review of the environmental and physical setting in which the site lies,
- Detailed site inspection for potential sources of contamination, and
- Detailed soil and groundwater sampling and analysis program to characterise potential contamination across the site.

Based on observations made during the field investigations, the sampling and analysis program conducted at the site and with respect to the proposed landuse, GEE conclude that there exists some localised soil contamination relating to lead. It is the opinion of GEE that the site can be made can be made fit for the intended use of residential development, by undertaking convention remediation measures. In this regard, and in accordance with local and State planning procedures, a Remedial Action Plan (RAP) will be required (references 1 and 17).

With respect to the presence of underground tanks and associated infrastructure, GEE recommends that they are removed in accordance with the following relevant publications:

- Protection of the Environment Operations (Underground Recoverable Storage Systems) Regulation 2008, and
- AS 4976 (2008): The Removal and Disposal of Underground Recoverable Storage Tanks.

Additionally, following the removal of the tanks and in conjunction with the remediation works, the resulting UST tankpits and fuel lines should be validated in accordance with the NSW OEH endorsed guidelines. GEE notes that these matters would normally be addressed as conditions of approval as any consent granted by Council relating to the removal of existing tanks and infrastructure.

Finally, considering that it is proposed to excavate across the majority of the site to facilitate the construction of a basement, the report provides an estimates of waste classification of the existing fill and natural soil profile to assist earthworks contractors in quoting for the proposed works. However, the classifications provided herein are only estimates and further testing will be necessary including leachate analysis using the Toxicity Characteristic Leaching Procedure (TCLP).

13 GENERAL LIMITATIONS OF THIS REPORT

This report has been prepared in general accordance with guidelines endorsed by the NSW Office of Environment and Heritage, and the conclusions of this report are based on a limited scope of work described herein, which was considered appropriate based on the same regulatory guidelines.

It is the intention of GEE that the report reflect actual subsurface site conditions, and the contamination status, of the entire site (within the depths investigated). However, regardless of the level of investigation undertaken, there will always be uncertainty when dealing with land contamination. For instance, the sampling points (boreholes and/or testpits) represent a relatively small portion of the site, and ground conditions may vary between sampling locations. The cause of such variation may include, but are not limited to, complex geological settings, the fate and transport characteristics of certain chemicals, the distribution of existing contamination, physical limitations imposed by the location of utilities and other man-made structures, and the limitations of assessment technologies.

Furthermore, the laboratory analytical results contained in this report, upon which conclusions are drawn, relate only to a discrete sample submitted for analysis. Also, not all chemicals have been assessed as part of this investigation. The chemical analytes targeted by this investigation are based on either the site's history, or represent a suite of common soil contaminants.

This report is based on site conditions which existed at the time of the field investigation and subsurface conditions may change over time, either through natural processes, or via ongoing activities on the site. Should additional information become available regarding conditions at the site (such as during construction), including evidence of previously unknown sources of contamination, then additional advice should be sought from GEE.

Finally, this report has been prepared for use by the client who has commissioned the works in accordance with the project brief only. Any reliance assumed by third parties on this report shall be at their own risk. This report should not be reproduced without prior approval by the client, or amended in any way without prior approval by GEE.

14 REFERENCES

- 1. NSW EPA, 1997: Environment Protection Authority 1997: *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites*. EPA NSW.
- 2. NEPM, 2013: *National Environment Protection (Assessment of Site Contamination) Measure 1999 Schedule B(2) Guideline of Site Characterisation.* As amended 16 May 2013.
- 3. DUAP (1998): State Environmental Planning Policy 55 Remediation of Land. (Department of Urban Affairs and Planning: Sydney).
- 4. Department of Mineral Resources, 1983: Sydney 1:100,000 *Geological Series Map Sheet 9130 (Edition 1).*
- Department of Land and Water Conservation (DLWC), 2004: Sydney 1:100 000 Soil Landscape Series Sheet 9130 (second edition).
- 6. Cook P.G., 2003: *A Guide to Regional Groundwater Flow in Fractured Rock Aquifers*. Seaview Press, Henley Beach (South Australia), 108pp.
- 7. DEC, 2006: Department of Environment and Conservation NSW (2006): *Contaminated Sites: Guidelines for the NSW Site Auditor Scheme (2nd edition)*.
- 8. NSW EPA, 1995: Environment Protection Authority NSW, 1995: Contaminated Sites: Sampling Design Guidelines, EPA NSW.
- 9. Australian Standard AS4482.1 2005 Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds.
- 10. Land and Water Biodiversity Committee (2003): *Minimum Construction Requirements for Water Bores in Australia.* Edition 2 Revised September 2003.
- 11. NEPC, 2013: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. *Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater.*
- 12. Friebel & Nadebaum (2011): *Technical Report No. 10 Health screening levels for petroleum hydrocarbons in soil and groundwater Part 1: Technical development document*. CRC for Contamination Assessment and Remediation of the Environment.

- 13. ANZECC/ARMCANZ, 2000: Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000: *Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy*. October 2000.
- 14. Hem JD. 1989. *Study and interpretation of the chemical characteristics of natural water.* 3rd edition. U.S. Geological Survey, Water-Supply Paper 2255, 263 pp.
- 15. Popek (2003). *Sampling and Analysis of Environmental Chemical Pollutants*. Academic Press.
- 16. DECC, 2009: Department of Environment and Climate Change (DECC), 2009: *Waste classification guidelines Part 1 classifying waste.*
- 17. Canterbury City Council, 2006: *Contaminated Lands Policy No. 53-057*. First adopted 10 June 199 and modified 10 August 2006.

FIGURES

APPENDIX A

Site Survey

APPENDIX B

Historical Aerial Photographs

May 2011 (Source: Land and Property Information – SIX Maps)

June 2009 (Source: Google Earth Pro)

March 2007 (Source: Google Earth Pro)

September 2003 (Source: Google Earth Pro)

October 2001 Aerial (Source: Land and Property Information)

September 1998 Aerial (Source: Land and Property Information)

August 1986 Aerial (Source: Land and Property Information)

May 1978 Aerial (Source: Land and Property Information)

July 1970 Aerial (Source: Land and Property Information)

1961 Aerial (Source: Land and Property Information)

May 1951 Aerial (Source: Land and Property Information)

1943 RTA Aerial Photograph

May 1930 Aerial (Source: Land and Property Information)

APPENDIX C

Historical Title Search Results

											······	
YEAR	Registered Proprietor / Owner Date Land-use	Registered Proprietor / Owner	Date Land-use	Registered Proprietor / Owner	Date	Land-use	Registered Proprietor / Owner	Date	Land-use	Registered Proprietor / Owner	Date	Land-use
	Lot 91		Lot A		Lot B (Formerly Lots 92 and 93)				darredthe anne adarr eon bae t		Lot 2	
	Sarah Hyde Sep-07 Land-use unknown although likely residential	. <u>.</u>	<u>.</u>	bud ame	Sep-1907	Land-use not known	Margaret Anne Barker Robert Heron	Sep-1905 Mar-1905	Land-use unknown although possibly part of the allotment was a green grocers and/or newsagents	:	:	1
1910				George Druie	Sep-1907							
							Charles McPherson	Dec-1913				
		Marion Hair	Feb-1916 Land-use assumed to 1 have been residential which has continued until	Marion Druie	Sep-1907		Edward Chamberlain / Charles McPherson William Irlan (?) - plumber	Apr-1913 Jun-1914		George Drurie Jnr	Apr-1914	Land-use unknown
1920			the present day. Originally there was a sincle dwelling on the	Eva Gillespie	Feb-1920		Johanna Castles - spinster	Oct-1918				
			allotment and then between 1961 and 1970	Philip Lotye	Feb-1921		Isabella Murray (grocer)	Apr-1920		William Ferguson	Aug-1923	
			this was replaced with an apartment building which still exists				Lease to Andrew Lennox and Arun Costa (Newsagents)	Oct-1924				
				Motor & Engineering Works Ltd	Jul-1929	It is assumed that this is when the site was						
1930				Alfred Charles Eden	Nov-1930	developed into a service station / vehicle garage						
				Australian Bank of Commerce then Leased by bank to a Charles Meredith (7) & Kelvin Goodwin both listed as proprietors of a motor garage	Nov-1932		Adrian Taylor and part of site owned by John Cole (Newsagents)	Oct 1934 & Nov 1934		Adrian Taylor	Dec-1935	
				Kelvin Goodwin (Motor Garage Proprietor). Leased in 1938 to Erro	Nov-1936		Celestine Taylor (Widow) / Lionel Buthner (newsagents)	Dec-1937		Celestine Taylor (Widow)	Dec-1937	
1940				Espert (garage proprietor) William Booth (Engineer) & Leased in 1943 and again in 1948 to Errol Espert (garage proprietor)	May-1938		David Chrystal (manufacturer)	Dec-1937	Assumed to have been used as a clothing warehouse / manufacture	David Chrystal (manufacturer)	Jan-1938 A	Assumed to have been used as a clothing warehouse / manufacture
				- - -			Crystal Clothing Industries Pty Ltd	Mar-1947		Crystal Clothing Industries Pty Ltd	Mar-1948	
1950				Edith Booth (Widow)	Oct-1950							
				Sydney Stafford Pty Ltd	Jan-1951							
				Caltex Oil (Australia) Pty Ltd	Dec-1953							
	8691-yem			Leased to Stepnen balley (garage proprietor)	ccv1-ner							
1960	Crystal Clothing Industries Apr-1959 Assumed to have been Ltd used as a clothing warehouse / manufacture	Grace Bothwell	Oct - 1960									
		Jonray Pty Ltd	Jun-1968									
1970		Patrick Mortini F	Feb-1971									
1980	J. Robins & Sons Pty Ltd Oct-1979 Shoe manufacturing and these activities continue until at least the time of			J. Robins & Sons Pty Ltd	Mar-1980	Shoe manufacturing and	J. Robins & Sons Pty Ltd	Oct-1979	Shoe manufacturing and these activities continue until at least the time of	J. Robins & Sons Pty Ltd	Oct-1979	Shoe manufacturing and these activities continue until at least the time of this
		John Hatter	Jul-1981		5	until at least the time of this investigation	~					Internidation
1990		J. Robins & Sons Pty Ltd D	Dec-1987									
2000												
2010	WM Ritchie Properties Ply Feb-2005 Ltd (current Owners and Property Investors) Leased to J.Robins & Sons Pty Ltd	WM Ritchie Properties Pty Ltd (Current Owners and Property Investors) Leased to J.Robins & Sons Pty Ltd	Jul-2004	WM Ritchie Properties Pty Ltd (Current Owners and Property Investors) Leased to J.Robins & Sons Pty Ltd	Jul-2004		WM Ritchie Properties Pty Ltd (Current Owners and Property Investors) Leased to J.Robins & Sons Pty Ltd	Jul-2004		WM Ritchie Properties Pty Ltd (Current Owners and Property Investors) Leased to J.Robins & Sons Pty Ltd	Feb-2005	
Present Day												

FOLIO: 1/533919

SEARCH DATE	TIME	EDITION NO	DATE
21/10/2013	11:12 AM	4	2/11/2009

LAND

____ LOT 1 IN DEPOSITED PLAN 533919 AT BELMORE LOCAL GOVERNMENT AREA CANTERBURY PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP533919 FIRST SCHEDULE _____ W M RITCHIE PROPERTIES PTY LIMITED (T AF86020) SECOND SCHEDULE (2 NOTIFICATIONS) _____ RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S) 1 AF38626 LEASE TO J. ROBINS & SONS PTY LTD EXPIRES: 2 30/6/2010.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

HAZ-DANIEL-

PRINTED ON 21/10/2013

Any entries preceded by an asterix do not appear on the current edition of the certificate of title. Warning: the information appearing under notations has not been formally recorded on the Register. Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Level 4, 122 Castlereagh Street, Sydney 2000 - DX 1078 SYDNEY PHONE: (02) 9261 5211 FAX: (02) 9264 7752 www.hazlett.com.au

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/10/2013 11:14AM

FOLIO: 1/533919

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 11098 FOL 218

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/6/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/3/1994		AMENDMENT: LOCAL GOVT AREA	
16/2/2005	AB292070	TRANSFER	EDITION 1
5/9/2005	AB745183	CHANGE OF NAME	EDITION 2
12/10/2009	AF38626	LEASE	EDITION 3
2/11/2009	AF86020	TRANSFER	EDITION 4

*** END OF SEARCH ***

HAZ-DANIEL-

PRINTED ON 21/10/2013

Any entries preceded by an asterix do not appear on the current edition of the certificate of title. Warning: the information appearing under notations has not been formally recorded on the Register. Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Level 4, 122 Castlereagh Street, Sydney 2000 - DX 1078 SYDNEY PHONE: (02) 9261 5211 FAX: (02) 9264 7752 www.hazlett.com.au

FOLIO: 2/533919

SEARCH DATE	TIME	EDITION NO	DATE
21/10/2013	11:12 AM	7	2/11/2009

LANI	0		
1	AT BELMORE LOCAL GOVEN PARISH OF S	SITED PLAN 533919 RNMENT AREA CANTERBURY ST GEORGE COUNTY OF CUMBERLAND RAM DP533919	
	ST SCHEDULI	Ξ	
		- ROPERTIES PTY LIMITED	(T AF86020)
SEC	OND SCHEDUI	LE (5 NOTIFICATIONS)	
	RESERVATIO	 DNS AND CONDITIONS IN THE CROWN GRANT(S) EASEMENT FOR ELECTRICITY SUBSTATION PURPOS WIDE AFFECTING THE SITE DESIGNATED (S) IN WITH 8392706	
3	DP1045527	RIGHT OF CARRIAGEWAY 1.025 METRE(S) WIDE A AFFECTING THE PART(S) SHOWN SO BURDENED IN	
4	DP1045527	EASEMENT FOR ACCESS AND MAINTENANCE VARIAE APPURTENANT TO THE LAND ABOVE DESCRIBED	
5	AF38626	LEASE TO J. ROBINS & SONS PTY LTD EXPIRES: 30/6/2010.	
NOT	ATIONS		

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

HAZ-DANIEL-

PRINTED ON 21/10/2013

Any entries preceded by an asterix do not appear on the current edition of the certificate of title. Warning: the information appearing under notations has not been formally recorded on the Register. Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Level 4, 122 Castlereagh Street, Sydney 2000 - DX 1078 SYDNEY PHONE: (02) 9261 5211 FAX: (02) 9264 7752 www bazdett com au www.hazlett.com.au

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH _____

> SEARCH DATE _____ 21/10/2013 11:13AM

FOLIO: 2/533919

First Title(s): SEE PRIOR TITLE(S) Prior Title(s): VOL 11098 FOL 219

Recorded	Number	Type of Instrument	C.T. Issue
28/3/1988		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
30/6/1988		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
1/3/1994		AMENDMENT: LOCAL GOVT AREA	
6/3/2001	7456620	APPLICATION FOR REPLACEMENT CERTIFICATE OF TITLE	EDITION 1
9/4/2002	8392706	TRANSFER GRANTING EASEMENT	EDITION 2
4/10/2002	DP1045527	DEPOSITED PLAN	EDITION 3
16/2/2005	AB292070	TRANSFER	EDITION 4
5/9/2005	AB745183	CHANGE OF NAME	EDITION 5
12/10/2009	AF38626	LEASE	EDITION 6
2/11/2009	AF86020	TRANSFER	EDITION 7

*** END OF SEARCH ***

HAZ-DANIEL-

PRINTED ON 21/10/2013

Any entries preceded by an asterix do not appear on the current edition of the certificate of title. Warning: the information appearing under notations has not been formally recorded on the Register. Hazlett Information Services hereby certifies that the information contained in this document has been provided electronically by the Registrar-General in accordance with Section 96B(2) of the Real Property Act 1900. Level 4, 122 Castlereagh Street, Sydney 2000 - DX 1078 SYDNEY PHONE: (02) 9261 5211 FAX: (02) 9264 7752 www.hazlett.com.au

93 95 at 45 rulo pol 2 o'clock in the aff noon. 2 4 D. will W. No. C HHI 233 MORTGAGE gated 21 st may _198.5 from the said adream Vaylor Rd Canterbury to BANK OF NEW SOUTH WALES Produced and entered_ 125 June at 58 mts ft 12 o'clock in the after noon. SCALE-120ft. to an inch. theles 10 REGISTRAR GENERAL. A-6990 An D

Req:E405534 /Doc:CT 2430-111 /Rev:24-Oct-2008 /Sts:OK.OK /Prt:21-Oct-2013 14:10 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

No. F590001 DISCHARGE of within mortgage No. D639926 dated # Kell & Sylender 1951 Produced & Beccher 1951 and entered & Beccher 1951 at 20m6, pt. 110'clock in the pre-noon. NO. C. 600810 APPLICATION BY TRANSMISSION Electine Louise in now the registered Pronvietors of the Land within described in pursuance of the above Application Produced 25 Covember 1937 and entered 3rd December 1937 o'olook in the REGISTRAR GENERAL 12 at noon. B to uses No. F590002 MORTGAGE dated Dace from the said Caystal Clothing Industrie REGISTRAR GENERAL amerly stilled crystal althing India No. B 600811 G A V. E. A T. Anten 25th Movember 1937 Stalande Bank Limited Produced and entered 18 december 1951 by the Registras Deperal. at 20mta pt. 11 o'clock in the Produced 25th Macmber 1987 entered 3rd Secember 1987 fore noon. o'clock in the An lo ullo REGISTRAR GENERAL REGISTRAR GENERAL No. 177930 DISCHARGE of within mortgage dated Ath December 1952 F 590002 NO. 0 612393 DISCHARGE within mortgage. oj No C 4441233 dated 24 th December Produced 12th December 1952 and entered 2th December 1952 1937 Produced 30 th December at 49 mts ht 12 o'clock in the after noon. _____**19**37 and entered 13 the January 1938 o'clock in the after noon. REGISTRAR GENERAL Theles No. F 777931 MORTGAGE dated 30th October 1952 from the said brystal blothing Industries Limited to The mutual Life and Bitizens' assurtance bombany Limited REGISTRAR GENERAL. Is hereby withdrawn. The within Cavea! No Clap. D. Selilum 13th January 18 38 Dated_ Produced and entered 12th December 1952 at 49 mto ht 120' clock in the after. noon. REGISTRAR GENERAL REGISTRAR GENERAL NO. C. GLZAZGAGAMMAT RANSFER dated 18th December 193 7 from the said beleatine Louise Tuglor to David No.KG91689 MORTGAGE dated 26th April 1951 to The M. L.C. Nominees Limited of the land within described Produced 30 th Desember 19.34 and entered 13th January 1938 at 2 o'clock in the after noon. 26th 19 67 Entered____ to theles Jatson REGISTRAR GENERAL. TRAR GENERAL No. C 612395 MORTGAGE dated 18th December 1937 from the said David Charptel MORTGAGE No. K. 6.91689 has been discharged. to BANK OF NEW SOUTH WALES 1589 Entered Lalle 1960 Produced and entered 13 13 th January 1938 2 o'clock in the after Natasnoon. REGISTRAR GENERAL w REGISTRAR GENERAL. The name of the requistered Afolheter is now Crystal Clerkin No. 0639924 DISCHARGE of within mortgage No. C612395 dated 10th March 1949 Produced and entered 19th March 1947 at Imtoht 11 o'clock in the fore noon. REGISTRAR GENERAL Nr. D639925 TRANSFER dated 6th January 1947 from the said David Chitystal to Chystal Clothing Industries My Simular This deed is cancelled as to hreans of the land within described New Certificates of Title have issued on 22-7-1914 Produced and entered 17th Match 1947 for lots in DRIOSITRD Plan No5 33919 as follows:at 7 mtsht 11 o'clock in the fore noon. Vol 11098 Fol 218-219 respectively. J. Wells -2 REGISTRAR GENERAL. anatan from the said Chystal Clothing Industries My Liquited to Bank of New Smally REGISTRAR GENERAL Produced and entered 17th March 1947 at Intert 11 o'clock in the fore noon. A Leve REGISTRAR GENERAL.

Req:E405535 /Doc:CT 6907-70 /Rev:4-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:10 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

See Section 94 Application No. H106694 Entered 30k December 1958. Sof TRANSFER No H298726 dated 2nd July 1959 /Entered 11th October 1960 Watco REGISTRAR-GENERAL -H 106695 No CAVEAT by the Registrar General. NoH574195 MORTGAGE dated 10 th augurt Entered 30th Recember 1958 and atizens ntared 1/84 Get REGISTRAR GENERAL. Guer

Req:E405535 /Doc:CT 6907-70 /Rev:4-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:10 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

No. K691689 MORTGAGE dated 26th April 1967. to The M. L. C. Nominees Limited. Entered 26th July 19 67 mulation TRAR GENERAL Shr MORTGAGE No. K 691689 Thas been discharged. Entered 16th Guly 19 18 671588 Jatson REGISTRAR GENERAL a name of the respective profession is new Couplat Notheriz Industria Pty Entered 16th REGISTRAR CENERAL New (ST. Te inver DP 533919. No dealing to be regist, without ref. To S.D.B. This deed is cancelled as to hnork New Certificates of Title have issued on 20-7-1969 for lots in DELOSITED Plan No. 533919 as follows:-Lots _____ Vol. 11098 Fol 215-219 respectively. mateo W. M.

Req:E405537 /Doc:CT 2464-59 /Rev:24-Oct-2008 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

of the land within described Anderson 1923 Produced and entered 28' Jugue TEAS CENC 52,00 at Intopt _o'clock in the ler noon. Anthank 94 95 96 353 per REGISTRAR GENERAL MORIGAGE gates 13' August 1823 William Me Jean Destin To to 985378 No. A_ 5 from the said Rġ sil Quie (Junior Canterbury n Produced and entered 28 1923 at Into pt o'cioch in ler noon. Scale - 120 & to an inch the state Fileally REGISTRAR GENERAL

Req:E405537 /Doc:CT 2464-59 /Rev:24-Oct-2008 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

No. F.777930 _ DISCHARGE of within mortgage No. 8 406921 DISCHARGE of within Mortgage dated with December 1952 £590002 Ag85348 dated 16 th august 1928 Produced____ 20 th august 1928 Produced 2th December 1952 and entered 12th December 1952 and entered 20 th languist at 49 mts pt & e'clock in the after noon. 1928 at 18 mit yet 11 o'clock in the have noon. May PUTH W REGISTRAR GENERAL No. F 111931 MURTGAGE dated 30th October 1952 The mutual fife and bitizens disurance to ompany No. B. 406922 MORTGAGE dated 14 august 1928 From the said william the Lease derin to Limited William And Henry austin a Produced and entered 12th December 1952 at 49 mts pt 12 o'clock in the after Produced and entered 20 & august 1 at 18 mb for o'clock in the your noon. n on. 1928 LUNTRAR GENERAL GLSTRAR GENERAL No.KG91689 MORTGAGE dated 26th April to The M.L.C. Nominees Similed 1967 No. C. 397858 TRANSFER dates 12 & December 1935 from the said William Mc Lean Derrin to adrian besil Taylor of Belterra Manufacturer Entered 26th of the land within described 1967 Produced and entered 19th December 1985 ai 42 mts hts o'clock/in the after noon. Jatson y to Unles EGISTRAR GENERAL REGISTRAR GENERAL. No. Du51680 TRANSFER dated 26th Movember 1845 from the said David Spring Hard Victor Jubbons and futu Hally Smith (present mortgages account forwar of sale) to grouge but of thirdstone Patr Railway Employee of the land within described Produced and entered Igo March 1946 MORTGAGE No. 669689 has been discharged. 715-88 Entered La aly 19 68 12 o'clock in the noon. 81 1 2 REGISTRAR GENERAL REGITTEAR GENERAL. The name of the rematered profester is new Empeted Bothing Industrials Pt, Similar 16th Stations No. D45,681 MORTGAGE dated 13th Movember 1945 from the said George brett to David Spring, Hended Produced and entered 19th March 1946 REOKTAK OFTE 12 o'clock in the neon. at ... New (ST. to inve on DP533919. No dealings ello d. REGISTRAR GENERAL. No. <u>D803047</u>. DISCHARGE of within mortgage No. <u>D451681</u>. dated 25th Tebruary 1948 This deed is cancelled as to break New Certificates of Title have issued on 22-7-1969. Produced and entered 3rd for lots in DELOSITAD Plan No. 533949 as followsta at 35mts fet 20' clock in the after noon. Lots 1-2 Vol 11098 For 218-219 respectively. mateon BGISTRAR GENERAL REGISTRAR GENERAL. No. 7803048 TRANSFER dated 24th Jebunary 1948 from the said Jesse Brett to Erystan Blothing Industries Ity Timite _of the land within described Produced and entered 3rd March 1948. at 35 mts pt 2 0' clock in the - noon. REGISTRAR GENERAL. No. F590002 MORTGAGE dateds & Dacender 1951 from the said Croptel Cothing Industries Emilted I found by styles agentes Abstragenductures Rg. Similton to Ductoralia and new Zealand Band Similton December 1951 at 20 months 11 o'clock in the fore noon. elle REGISTRAR GENERAL

Req:E406872 /Doc:CT 1911-230 /Rev:2-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:00 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

25622 (s) (C.) New South Waley. [Appn. No. 0373.] REGISTER BOOK, [Reference to last Cortificate 1911 Folio 230 [Vol. 1833 Folio 127 VOL. CANCELLED Robert Horonog morth Lyaney Master Mainer, Transforce under Instrument of Transfor from Porpetual Trustee Company Limited, mintered 5074 664 now the proprietor of an Estate in Fee Simple, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in Fratpiece of land situated , Parish of S: George in the Muricipality of Cartorbury , and County of Cumbercand containing Two roods one and one half perches , or thereabouts as shown on the Plan hereon, and therein edged red, being Los 94 and part of Los 93 on a plan deposited in the Land Titles Office Lyaney numbered 3862 and part of Thirty acres (Portion 83 of Parish, delineated in the Public atto ap of the said Parish deposited in the Department of Lundo originally granted to Francis Wilde by Everon Grant dated the thinkette day of fime one thousand eight hundred and wonly three 3 In witness whereof, I have hereunto signed my name and affixed my Seal, this ______ day of hember one thousand nine hundred and eight Signed the 31 day of September 1908, Abromby in the presence of Deputy Registrar General. NOTIFICATION REFERRED TO. No. A 195/18 TRANSFER dated 1st March 1913 from the said Robert Heron to Edward Chamberlan - 97 91 of parts the land within described

Produced and entered 2200 1913 UT 2 1/2P after ROOM o'clock in the A 22167/410 Cancelled & Certificate of Title issued 228681 Vol. 2361 For 163 REGISTRAR GENERAL 95 93 94 92 No. A 6990 4 TRANSFER dated 28 November 1013. Buildin Вą from the said Robert Heron to Charles Canterbury mc Pherson of the Residue of the la Produced and entered 5 Desimber of the land within described 1913 at 22 mp + 3 o'clock in the aper noon Descriptions of Title issues IX. Reliacus 1+2130 Fol. REGISTRAR BENERAL -

Req:E406872 /Doc:CT 1911-230 /Rev:2-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:00 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

Req:E406873 /Doc:CT 2361-163 /Rev:13-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:00 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

ERTIFICA (C.) New South Wales. REGISTER BOOK, [App" No. 5373 ----Vol. 2367 Folio 163 [Reference to last bertificate [Vol. 1911. Folio 230-CANCELLED ~ of Bilmore Saddler Transfere under Instrument of Transfer from Robert Heron Nº A. 19518____ — is now the proprietor of an Estate in Fee Simple, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in That_____ piece of land situated. , Parish of It George _____, and County of Gumberland_ in the Musucipality of Ganterbury ____ containing Thirty three and one quarter perches. , or thereabouts. as shown on the Plan hereon, and therein edged red, being part of Lots 93 and 94 on a Plan deposited in the Land Titles Office, Sydney, No. 3862 and also part of Thirty acres (Portion 83 of Parish) delineated in the Public map of the said parish _____ deposited in the Department of Lands originally granted to Francis Wilde by Grown Grant dated the thirtieth day of June one thousand eight hundred and twenty three The state the state of the second In witness whereof, I have hereunto signed my name and affixed my Seal, this Just day of May one thousand nine hundred and thirteen Signed the 10th day of Mary 1913, in the presence of or Maley Deputy Registrar General NOTIFICATION REFERRED TO No. A 111933 TRANSFER dated 119 une 197 from the said Edward Chamberlain to 97 91 of the land within described duced and entered 17 Ju 1914 1t 3 o'clock in the ALCONTO -19ml noon 2286. 84 33%per Webors REGISTRAR GENERAL 94 92 93 MORTGAGE deted 19 the R. No. A 128727. 1914 ADE from the said William Irlam To Susan Building Rd Canterbury Tallat of Dulwich Hill Aunster Produced and entered 2.4th 1914 SCALE: 120%. to an inch. at 2 mto pt. 3. o'alack in 2007 REGISTRAR GENERAL 800 IN. July

Req:E406873 /Doc:CT 2361-163 /Rev:13-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:00 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

No. A 418624 TRANSFER dated 26th Detober 1918 The wichin mentioned LEASE No. B 885/471 from the said William Irlam To Johannah Castles, of Unth Sydney. Sprinster has expired by effluxion of time. Dated 6th Torenber 193/1 Vide C 293348 _of the land within described. Produced and entered 28th October 1918 on W. Will at 51 mb fit 1 o'clock in the after noon. atto REGISTRAR GENERAL 1 betk No. 02933/193 RANSET R from the said Charles Cole of REGISTRAR GENERAL Jeane to of Belmore NO. A 562472 TRANSFER dated 16th April heitsagent 1820 from the said Johannah Castles To Sabella Murray wife of Shomas Murray of Leichhardt Grocer the land within aescribed at 2 Jude 10 2, o'clock in the aller 19321 in the affe noon. of the land within described. Produced and entered 22nd April 1920 oy W. thill V at gonts pt 11 o'clock in the fore noon. No. C 517108 TRANSFER dated 24 Stebrar 193 REGISTRAR GENERAL from the said of file and the file the state of the file the file of the file of the said Delmore The No B 131543 Lease dated 21 duly 1924 from the said Scafe Cla (atherprise Elizabeth) Murray of the land within described La colndrew Lennow and chrangle leagter both of Produced and entered 3rd allanch 193 at 3 mate http: o'clock in the noon. V fuithout evidence for word of the moregagee) 25 Set dember 1924 Produced and entered 21 of other 1924 Roy to Unelio 100'clock in the fore noon. REGISTRAR GENERAL. Both dealure 6. e. m. e. 3 No. C. E. 710 7 MORTGAGE dated 24 from the said REGISTRAR GENERAL. DISCHARGE of within Mortgage No. B 429183 dated 35th October 1926 Produced and entered 3rd Alarch A. 128 424 ai 3 ant http:// in the appleten noon. Ht. hovember 1926 and entered Produced hovember 1923 no thelis V ut 5 Into 15 2 o'clock in the after noon. REGISTRAR GENERAL. In Ali Eleany No. F834 243 DISCHARGE of within mortgage A 2 517109 REGISTRAR GENERAL, -dated 24 March _1953 Produced 7th april 1953 and entered The april 1953 No. B. #2918H MORTGAGE dated 55 the October 1926. From the said Lieabeth Deane inter of there Deane (low Gigabeth muscay) to uny soloan fore will be george walter Musclon Low (many) at 31 mts. Kt. 10 o'clock in the fore noon. wantance Afficer Produced and entered 4th hopember 1906 STRAR CA at 3 Ma Wa o'clock in the alter noon. REGISTRAR GENERAL. 2 No. F834244 TRANSFER datada74 m Antheleaur from the said time for REGISTRAR GENERAL. OUTH W The within mentioned LEASE No. BIS1543 Produced and entered 7 the aprile 1953 has expired by effusion of time # 3 lorns pa 100' clock in the fore nocn. Dateo 12th Movember 1929 Vide 13. 555249 REGISTRER GENERAL RECISTRAK GENERAL F834245 MORTGAGE dated rel. april 1953 from the still along therein Halparte and Bengel Ho. B. 885471 Lease dated 18th Septen 100 from the said digaleth Deane fuith conse-that genes to Frederick James & Ede and Thyroles Charles & & Belmore their Southine. Holda agento Produced and entered 7th April 1953 Picauced Joth : September 1959 at 3/ mhappy. 10 o'clook in the fire noon. ANTOI RO ISthe Overshe 10 29 c doch in the after soon. C.C. EGISTALAR GENERAL Shayton & 148169 Descharge of within Mortgage F834245 dated REGISTRAR GENERAL 22nd June 1954 . Broduced oth leptember 1954 and efter the No. C 243347 No. C 243347 DISCHARGE B 429184 Dated 29th October Produced and entered 6the November within mostgage. September, 1954 at 12 O'clock norm. 193/F Red Registrer ymeral 193 2 nt 39 mb 10 2 0'0 & 148170 Transfer dated 6th July, 1954 Brow the raid of in the atter noon: RAP Aboy Hertest Holgate and Berge prophine Holgate to Stephen 3 Ledie Bailey of the land within dessorbed. Produced 8th deptember, 1954 and entered 17th flepter ton, 1. Poy W. Wieli REGISTRAR GENERAL. at 12 of clock noon. As to land in this transfer 2932 Sectopertor cancelled and 6907 tificate issued Register yeneral

Req:E406874 /Doc:CT 1636-37 /Rev:22-Sep-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:01 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

54317 New South Wales. (C.) [Appn. No. 5373] REGISTER BOOK, [Reference to trust Certificale] 1636_{Folio} 37 [Vol. 1186 Folio 187] Vol. Margaret ann Barkor unter Joseph aution Backer of Monuckritte Jailer Accureferer under Suchemment of Accurefor from Perjectual Francher Company Lumber Aumbered A14140 is ____ now the proprietor of an Estate in Fee Simple, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such There piece of land situated encumbrances, liens, and interests as are notified hereon, in in the clauncipal Destruct of Canterlany Parish of M-George , and County of Canterloand Three roods swenty four and third quarters perches , or thereabouts. containing Lots 95, 96, and 9 as shown on the Plan hereon, and therein edged red, being on a Plan deposited in the Land Titles Office, Sydney, numbered 3262 and full of Thereby acros (portion 83 of pareste) defended in the public allap of the sand paush deposited in the Deportment of Lands originally growted to Frances Wilde by Court Grant dated the Aluchetter day of June and Howand eight hundred and hearly three & Bt. In witness whereof, I have hereunto signed my name and affixed my Seal, this______ day ofone thousand nine hundred and find day of Teptimber Signed the Marmhrong in the presence of Deputy Registrar General. NOTIFICATION REFERRED TO. 91 Sealemartes 22 October 94 95 96 ANDERSON Reliquel GAS 1 0: 3: 21% of Filia ? 1 2309 10 195 4 No. A 91270 TRANSFER dated 18 * March 132 AF # 1/2 LA from the said margaret ann Barker To ROAD CANTERBURY George Duvie (Senior) pt Lot 95 fleet Flan 3862 201 march 1914 of the land within described Produced and entered 8% 1814 at. 4 o'clock in rtis noon. Cancelled & Certificate Weborns Yoi. Fol. REGISTRAB GENERAL
Req:E406874 /Doc:CT 1636-37 /Rev:22-Sep-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:01 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

• . # 1 % No. A 912-71 TRANSFER dated 18th march 191 . from the said margaret- ann Barker' to 1 TRANSFER dated 18th March 1914 Durie (minion) George the Residue p. 202 march 191. _ of the land within described Produced and entered_ 18ª april CISTEM CEALS after noon. o'clock in the at_ Cancelled & Certificate of Title Issued Yol. 21161 Fol. 58. THI APETS. REGISTRAR GENERAL ÷ .

					:		-	•		
			FIRS	FIRST SCHEDULE (CON	(continued)		•			
	-	REGISTERED PROPRIETOR	ETOR			NATURE	INSTRUMENT	DATE	ENTERED	Signature of N25 PCR24/1
T. Rodins &	Star Ptalin	Limited.				Tran Aler	C-25590		510-1970	6
	Ċ					A.				
any oʻza a histori di yazarasi ya yana oʻza ya da kanyori tira atana ana aya da ya ana ata a		An instance of the second se	p		•					
		•								
								· · · ·		
CHINC	ANDELLER									
								-		
OFF M	SEF AUTO EQUID									
					1		 		- ``	
				•						
			SECOND	SCHEDULE	ontinued)					
INSTRU NATURE INSTRU	UMENT IUHBER I DATE		SEC0 PARTICULARS	SCHEDULE	(continued)	ENTERED	Signature of Sistrar General		CANCELLATION	
NATURE INSTRUMENT	а на 16•3		SECOND SCHEDULE (PARTICULARS to Australia and New Zealand Banking Group Limi	ND SCHEDULE (cc			Signature of Registrar General	Ownaged	CANCELLATION	
	74	to Australie end	SECO PARTICULARS New_Zealand_Banki	ND SCHEDULE (cc				Diversed.	CANCELLATION	
	12 m	to-Austral-Le-end	SECO PARTICULARS -New Zealand Banki	ND SCHEDULE (cc		R R		Döcharged	CANCELLATION	
	²⁰ 4	to-Australia-	SECO PARTICULARS New Zealand Banki	ND SCHEDULE (cc				O. orchanged	CANCELLATION	
	₩	to Anstralize	SECO PARTICULARS -New-Zealand Banki	ND SCHEDULE (cc				Vörlang ba	CANCELLATION	
		to Australia	SECO PARTICULARS -New-Zeesland Banki	ND SCHEDULE (cc				Diochurg ed	CANCELLATION	
			SECO PARTICULARS New Zeelland Banki	ND SCHEDULE (cc				Viorhang ex	CANCELLATION	
			SECO PARTICULARS -New-Zeelland-Banki	ND SCHEDULE (cc				line and a second	CANCELLATION	
	<u></u> [™]		SECO PARTICULARS -New-Zeesland-Banki	ND SCHEDULE (c				Diochurg ed	CANCELLATION	
	<i>™</i> 1		SECO PARTICULARS -New-Zeealand Banki	ND SCHEDULE (c				Disalien ged	CANCELLATION	
			SECO PARTICULARS New Zeeland Banki	ND SCHEDULE (c				Worksang &	CANCELLATION	
			SECO PARTICULARS -New-Realand Banki	ND SCHEDULE (cc				l'écharged	CANCELLATION	
	P A		SECO PARTICULARS -New-Zeesland Banki	ND SCHEDULE (c				l'échang ed	CANCELLATION	
	2°4		SECO PARTICULARS -New-Zeesland-Banki	ND SCHEDULE (c				Cioching of	CANCELLATION	
			SECO PARTICULARS JVew-Zeealand Banki	ND SCHEDULE (c				line and the god and the second se	CANCELLATION	
			SECO PARTICULARS New-Real and Banki	ND SCHEDULE (c				i i i i i i i i i i i i i i i i i i i	CANCELLATION	
			SECO PARTICULARS New Zeesland Banki	ND SCHEDULE (c				L'écharged	CANCELLATION	

Req:R423036 /Doc:CT 10589-075 CT /Rev:12-Jan-2011 /Sts:OK.OK /Prt:21-Oct-2013 14:10 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H 1058507 IFICATE OF TITLE NEW SOUTH WALES ERTY ACT, 1900, as amended. 10589 Fol 75 Appin. No.5373 Vol. CANCELLED Prior Title Vol. 2464 Fol. 57 Edition issued 27-6-1967 20 r AS K700743 20 I certify that the person described in the First Schedule is the registered proprietor of the undermentioned estate in the land within described subject nevertheless to such exceptions encumbrances and interests as are shown in the Second Schedule. ð 058 Jata Witness Mutalter WARNING THIS DOCUMENT MUST NOT BE REMOVED FROM THE LAND TITLES OFFICE Registrar General. PLAN SHOWING LOCATION OF LAND Vol Plan in (Page 1) B791600 66% PERSONS ARE CAUTIONED AGAINST ALTERING OR ADDING TO THIS CERTIFICATE OR ANY NOTIFICATION HEREON 37p. R.95 R.96 94 Rd. Canterbury K700743 L.C. Scale: 80 feet to one inch KR. ESTATE AND LAND REFERRED TO Estate in Fee Simple in the part of Lot 95 in Deposited Plan 3862 shown in the plan hereon in the Municipality of Canterbury Parish of St. George and County of Cumberland being part Portion 83 granted to Francis Wilde on 30-6-1823. FIRST SCHEDULE (continued overleaf) CRYSTAL CLOTHING INDUSTRIES LIMITED. SECOND SCHEDULE (continued overleaf) 1. Reservations and conditions, if any, contained in the Crown Grant above referred to. Entered 12-12-1952. 2. Mortgage No.F777931 to The Mutual Life and Citizens Assurance Company Limited. Jakas Registrar General

NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED

							Matque KC91029 201 1007 to Jk. M. S. C. Menucius Similed	NATURE INJINUTIENI DATE PARTICULARS	SECOND SCHEDULE (continued)				Januara (Loss 1-2 4 Vol 1078 rol 2 Fred respectively.	for lets in Der Trad Han No 533919 as follows:	New Certificates of Title have is used on data Tranks	This deed is cancelled as to Arecesse			REGISTERED PROPRIETOR	FIRST SCHEDULE (continued)
						-	 <u> 26-1-1967</u>	ENTERED			- -		te selo anti monor a conservatione de					The Part		NATURE	
							 Januar	Signature of Registrar-General		-										INSTRUMENT NUMBER	
							 Gardangert					· · · · · · · · · · · · · · · · · · ·	and an and a second						· .		
							 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CANCELLATION											$ETS \subseteq \mathcal{H}$	ENTERED	
													A Contract of the second							Signature of Registrar-General	

LAND AND PROPERTY INFORMATION NEW SOUTH WALES - TITLE SEARCH

FOLIO: 91/3862

-----

SEARCH DATE	TIME	EDITION NO	DATE
21/10/2013	11:15 AM	4	2/11/2009

LAND

LOT 91 IN DEPOSITED PLAN 3862 LOCAL GOVERNMENT AREA CANTERBURY PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP3862

FIRST SCHEDULE

_____

#### W M RITCHIE PROPERTIES PTY LIMITED

(T AF86020)

SECOND SCHEDULE (2 NOTIFICATIONS)

 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
 AF38626 LEASE TO J. ROBINS & SONS PTY LTD EXPIRES: 30/6/2010.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

HAZ-DANIEL2-

#### PRINTED ON 21/10/2013



Req:E404781 /Doc:CT 7700-222 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 11:17 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H



Req:E404781 /Doc:CT 7700-222 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 11:17 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H



Req:E405538 /Doc:CT 7496-62 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

PIC South Veltales.     Primary Ages. No. 5373       Reference to Lata Thic     Image: South Veltales.       Vol. 2001     Fol. 70       NUMBER DWARD MODE, of Balmore, Benarer, is now the proprietor of an Setate in Pace Simple fr. an undivided one half share.       and harms where I have berease to description in that pice of and in the functional state and county of Custorians       In these where I have berease of good any name and affind my South is Custorsth       In these where I have berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of Have berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed any name and affind my South is Custorsth       In the presence of flave berease signed my name and affind my South is Custorsth       In the presence of flave berease signed my name and affind my South is Custorsth       In the presence of flave berease signed my many custorsth       In the presence of flave berease signed my custorsth       In the presence of flave b	Primary Appn. No. 5373	szew zourij verares.	
Reference to Last Title Vol. 2001 Fol. 70 HAROLD EDWARD HYDE, of Belmore, Shearer, is now the proprietor of an Estate in Fee Simple in an undivided one half share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being lot 91 in Deposited Flam No.3862 and being part of Fortion 83 granted to Francis Wilde on 30th June 1823.		TENANCY IN COMMON	
Vol. 2001 Fol. 70 Recistran Book. You	Reference to Last Title		,
Vol. <u>7496</u> For <u>62</u> NA Issued on Transmission Applicati No.6910147 HAROLD EDWARD HYDE, of Belmore, Shearer, is now the proprietor of an Estate in Fee Simple in an undivided one half share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland teing Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.		SANGELLED W	
HAROLD EDWARD HYDE, of Belmore, Shearer, is now the proprietor of an Estate in Fee Simple in an undivided one half share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	Vol. 2001 Fol. 70		
MAROLD EDWARD HYDE, of Belmore, Shearer, is now the proprietor of an Estate in Fee Simple in an undivided one half share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.		ST NOO	***
HAROLD EDWARD HYDE, of Belmore, Shearer, is now the proprietor of an Estate in Fee Simple in an undivided one half share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	ti i		ation
share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	ent Pri	No.G910147	
share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	Governm		
share, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	Petufer		
subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	4	rer, is now the proprietor of an Estate in Fee Simple in an undivided one half	
liens, and interests as are notified hereon, in that piece of land in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Fortion 83 granted to Francis Wilde on 30th June 1823.	-90		
in the Municipality of Canterbury Parish of St.George , and County of Cumberland being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	5		
being Lot 91 in Deposited Flan No.3862 and being part of Portion 83 granted to Francis Wilde on 30th June 1823.	2		
In witness whereof I have hereunto signed my name and affixed my Seal, this Sixteenth day of May , 1958 Signed in the presence of Affiliation for the land within described.			
In witness whereof I have hereunto signed my name and affixed my Seal, this Sixteenth day of May , 1958 Signed in the presence of Stopbortimer } NOTIFICATION REFERRED TO NOTIFICATION REFERRED TO NOTIFICATION REFERRED TO I H 203460_ TRANSFER dated dot April of the land within described.			
Signed in the presence of <i>Afghbortimer</i> NOTIFICATION REFERRED TO NOTIFICATION REFERRED TO May of May of May (1950) Registrar-General.	In witness whereof I have hereunto signed my r	name and affired my Seal this starteenth $larsh$	
Signed in the presence of NOTIFICATION REFERED TO NOTIFICATION REFERED TO NOTIFICATION REFERED TO NO. <u>H203460</u> TRANSFER dated. <u>30rd April 1952</u> . No. <u>H203460</u> TRANSFER dated. <u>30rd April 1952</u> . To <u>borystal blothing Industries demitted</u> 	liftcan	May (1916 Co.	
NOTIFICATION REFERED TO NOTIFICATION REFERED TO NO. H 203460 TRANSFER dated 30 ^d April 1952. No. brystal blothing Industries domilled of the land within described.	Signed in the presence of Symbolic	mer 4 1P 10, (2)	1
NOTIFICATION REFERRED TO NOTIFICATION REFERRED TO NO. H203460 TRANSFER dated 30 rd April 1959. 10 Lorystal blothing Industries dimited of the land within described.	of a	Registrar-General	1
of the land within described.	NOTIFICATION REFERE		
volume vo	Certi		
vi geippe 10 of the land within described.	ig No. 1203460 TRANSFER dated.	ted	
of the land within described.			
	add	ne land within described.	
alter 1959			
As to land in this transfer	Encound 18th May 1959		
and new certificate issued forvation	As to land in this transfer		
	B B B B B B B B B B B B B B		
E PECISTRAR CENERAL MODEL	REGISTRAR GENER		



Req:E405538 /Doc:CT 7496-62 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H



Req:E405539 /Doc:CT 7496-63 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

202		Patr South 7774 alar	[CERTIFICATE OF TITLE.]
	Primary Appn. No. 5373	New South Wales.	TENANCY IN COMMON
	Reference to Last Title		CANCELLED 1
	Vol. 2001 Fol. 70	2	REGISTER BOOK.
			Vol. 7496 Fol. 63
		A REAL PROPERTY M	A Issued on Transmission Application
nt Printe			No.G910147.
Governme			
Petuler, (			
A. H.	CHARLES HYDE, of Belmore, P.M.G. Linesman, is	now the proprietor of an Estate in Fee Sin	mple in an undivided one half
K 20362	share,		
12 <i>57</i> K	subject nevertheless to the reservations and conditions, if liens, and interests as are notified hereon, in that	piece of land	o, and also subject to such encumbrances,
1266	in the Municipality of Canterbury		ad County of Cumberland
	being Lot 91 in Deposited Flan No.3862 and being		
reon.	~		
any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Apphartimer</i>	fixed my Seal, this Sixteenth	day of May , 1958
ate or any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Pollowtimer</i>	fixed my Seal, this Sixteenth	day of May , 1958 J. HPello Registrar-General.
ertificate or any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Bytobertimer</i> <u>NOTIFICATION REFERRED TO</u>	<pre>fixed my Seal, this Sixteenth }</pre>	J. Wells ( RAP OF ME)
this Certificate or any notification the	In witness whereof I have hereunto signed my name and aff Signed in the presence of <i>Applebortimer</i> <u>NOTIFICATION REFERRED TO</u> <u>Who. 1203460</u> TRANSFER dated <u>20^m</u> and	}	J. Wells ( RAP OF ME)
ng to this Certificate or any notification the	In witness whereof I have hereunto signed my name and all Signed in the presence of <i>Applebortimer</i> <u>NOTIFICATION REFERRED TO</u> <u>No.6 H 203460</u> TRANSFER dated. <u>20^m applebort</u> <u>Aro bryetal blatting Industries Limited</u>	}	J. Wells ( RAP OF ME)
t adding to this Certificate or any notification the	In witness whereof I have hereunto signed my name and aff Signed in the presence of <i>Applicationer</i> <u>NOTIFICATION REFERRED TO</u> <u>NO.6 H 203460</u> TRANSFER dated. <u>20^m applied</u> <u>Wo bryetal blathing Industries Limited</u>	} al_ 1957.	J. Wells ( RAP OF ME)
ing or adding to this Certificate or any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Applicationer</i> <u>NOTIFICATION REFERRED TO</u> <u>NO.6 H 203460</u> TRANSFER dated. <u>20^m</u> <u>No.6 H 203460</u> TRANSFER dated. <u>20^m</u> <u>No.6 hryetal blothing Industries Limited</u> <u>of the land with</u>	} al_ 1957.	J. Wells ( RAP OF ME)
t altering or adding to this Certificate or any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Applicationer</i> <u>NOTIFICATION REFERRED TO</u> <u>NO.C H 203460</u> TRANSFER dated. <u>20^m</u> <u>No.C H 203460</u> TRANSFER dated. <u>20^m</u> <u>No.C H 203460</u> TRANSFER dated. <u>20^m</u> <u>Of the land with</u> <u>Some 18^m</u> <u>No.C H 203460</u> <u>1850</u>	} al_ 1957.	J. Wells ( RAP OF ME)
sgainst altering or adding to this Certificate or any notification the	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>Applicationer</i> <u>NOTIFICATION REFERRED TO</u> <u>No. H203460</u> TRANSFER dated. <u>20^m</u> <u>No. H203460</u> TRANSFER dated. <u>20^m</u> <u>No. H203460</u> TRANSFER dated. <u>20^m</u> <u>Coo brystal blothing Industries Limited</u> <u>of the land with</u> <u>Entered</u> <u>18^m</u> <u>May</u> 1959. As to land in this transfer this deed is cancelled 1	} al_ 1957.	J. Wells ( RAP OF ME)
Persons are cautioned against altering or adding to this Certificate or any notification thereon.	In witness whereof I have hereunto signed my name and af Signed in the presence of <i>AffollowTimer</i> <u>NOTIFICATION REFERRED TO</u> <u>No.C. H 203460</u> TRANSFER dated. <u>20^m</u> <u>No.C. H 203660</u> TRANSFER dated. <u>2007</u> <u>No.C. H 203660</u> TRANSFER da	} al_ 1957.	J. Wells ( RAP Dry D)



Req:E405539 /Doc:CT 7496-63 /Rev:5-Mar-2009 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H



Req:E406875 /Doc:CT 2464-57 /Rev:24-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:01 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

	CEBTIFICATE OF TITLE. 77821
	OLIULII IOLLI CL LLL Stor
	(C.)
	New South Chales.
	CANCELLEDN
	REGISTER BOOK,
	[App" No. 5373] ZITAT ST VOL 2.164 FOLIO 57
-	[Vol. 1636 - Folio 37]
-	i and the second s
	P Ot
	George Durie Senice of Belmore Manager Francier under Indrument of
• •	<u>Ucceque Decece</u> que ante antegr part,
	Tranofed from Margaret Ann Barker Nº A 91270 is now the proprietor of an Estate in Fec Simple,
	subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to and also subject to such
	encumbrances, liens, and interests as are notified hereon, in That piece of land situated
	in the Municipality of Canterbury, Parish of St George, and County of Cumberland
	containing Thirty seven perches, or thereabouts,
	as shown on the Plan hereon, and therein edged red, being frant of Lot 95
	on a Plan deposited in the Land Titles Office, Sydney, No. 3862 and also part of Fristy acres ( Portion 83 of Parish)
	Idelineated in the Public map of the saud Paush deposited in the Department of Lands originally granted to Frances
	Wilde by Groun Grant deled the thirdet day of June One thousand eight hundred and
	Twenty three
	Iwenty three
	In witness whereof, I have hereunto signed my name and affixed my Scal, this Lighth day of
1	April one thousand nine hundred and fourteen
	Signed the Side day of April 1914.)
•	
	Signed the grand day of Abril 1914, in the presence of Andrey
	Chi Dates F
	Deputy Registrar General.
	SOUTH WIL
	NOTIFICATION REFERRED TO.
	NOTIFICATION REFERRED TO.
	No. A go dis 22TRANSFER dated 3 Helina 1923
	91 97
	of the land within described

Produced and entered 3 19 at 19 min 6/2. o'clock in the from noon. 6 4 Anderson SISTAM OFF 32 per g ir 66 E Alleans: SOUTH 94 95 96 . REGISTRAR GENERAL 37per 1 35 % per. No. C 88513 MORIGAGE agted 2 Febr from the said Andrew Ferguson the Union Bank of Quist ġ, 16 Rª W Canterbury Produced and entered 15 - September 1931 at 8 Sept 20' clock in the after noon, STRAA GEA after noon A. Scale - 120% to an inch Inopowohie SOUTH A ach REGISTRAR GENERAL Yest

181 No. C. 612395 MORTGAGE dated 12 24 December 1937 No. C286781 DISCHARGE within mortgage of from the said David Chrystal 2 CAS13 Daied 5th October 1934 Produced and entered 10th October to BANK OF NEW SOUTH WALES 1934 at 45 mts pel 2 o'clock in the after. Produced and entered 13 2 o'clock in the after al. noon. REGISTRAR GENERAL lo Unlis REGISTRAR GENERAL No. 0-286782. No. 0286782. THANSFER aated 29t September 1934 from the said Condrew Forguson to advian Cecil Saylow of Marling Joint Sentleman No. DC39924 DISCHARGE of within mortgag No. CC12395 dated 10²⁶ March 1947 Produced and entered 17th March Produced and entered 10 the October 1934 194 at Intofit 11 o'clock in the fore noon. at 45 mits fol 2 o' clapter in the after on W. Willing REGISTRAR GENERAL RECISTRAR GEVERAL No. D6 39925 TRANSFER dated Offgannan 1947 from the sald David Chrystal to Crystal Clothing Suductice My Semiler NO C HHI 233 HORTGAGE aated at may 1935 from the said adrean Cecil Taylor to BANK OF NEW SOUTH WALES of the land within described Produced and entered 17th March 1947 1 st June at Yndight 11 o' clock in the fore noon. Produced and entered_ 1936 at 58 mts It 12 o'clock in the after noon. Urles REGISTRAR GENERAL. REGISTRAR GENERAL. No. D.6.39926 MORTGAGE dated 21st Jebruary from the said Crystal Clothing Industriest Similed to Spork of New South Wales NO 6 60 0 810 APPLICATION BY TRANSMISSION Belestine Lauise Lifer of Kantwick Widow -io wow the registered Pronvietors of the Land within described in pyrsuance of the above Application Produced 25th Clorenties 1937 and entered 3th Secenter 1937 Produced and entered 17th March 1947 at Trucht 11 o'clock in the fore noon. o'olock in the 1000. to me REGISTRAR GENERAL. REGISTRAR GENERAL. No.F5 90001 No. D6 39926 DISCHARGE of within m rtgage dated 14th September 1951 No. C. 600811 CAVEAT dated 25th Movember 1937 Produced Secondar 1951 a d entered 18th December 951 by the Registrar General. Produced 25 th Oloulon her 1937 entered madecember 1937 at 20 mts. pt. 11 o'clock in the fore noun. o'clock in the noon. REGISTRAR GENERAL REPISTRAR GENERAL No. F59000 2 MORTGAGE dated Set Proce from the said Crystal Clothing Industries dur (formerly styled Crystal Clothing Industries Pty Limited) & Australia Industries 10. 0 61239.3 DISCHARGE of within moitgage No CH 41233 Gated 24 th December 1937 00 Scalande Bank Sumited Produced and entered & December 1951 Produced 30 th December 1937 and entered et 20mto. pt. 11 o'clock in the fore noon. 13th January 1938 o'clock in the after noon. at_ Thelio 10-REGISTRAR GENERAL REGISTRAR GENERAL. No. F777930 __ DISCHARGE of within mortgage F590002 dated 4th December 1952 The with a Caveal Ko______ is hereby withdrawn. Dalea 13th January 1938 TRAR GENE Produced/2th December 1952 and entered 12th December 1952 STR F #H9mto ht 12 e'clock in the after RG# Thelio SOUTH SOUTH 10 REGISTRAR GENERAL Y REGISTRAR GINERAL No. C_let 239 to TRANSFER dated Bt December 1937  $\odot$ from the said belesting Louise Taylor to David Chrystal of Punchbowl madufactures 1 No. F 117931 Ro. F 111931 MORTGAGE dated 30th October 1952 from the said by the blothing Industries limited to The mutual fife and biblizens' assurance g of the land within described Produced 30th December 1937 and entered 13th January 1938 at _____ o'clock in the after noon. Produced and entered" 12th December 1852 at49 mb. ht 12 o'clock in the after to on. to thele REGISTRAR GENERAL THAR GENERAL 10589 1125 - dried 27-6-67 V.3EOK100743 14691689 Manderson REGISTRAR CENERL

Req:E406876 /Doc:CT 2001-70 /Rev:2-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:01 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

RTIFICATE 50034 Rew South Wales. (C.) [App". No. 5373 REGISTER BOOK, Reference to dast berbificate 2001 FOLIO Vol. Folio 24 ] [Vol. 1537 CANCELLED W Wife of Edward Tyde of Belmore, Railway Employee, Thansferee under Instrument of Thansfer from now the proprietor of an Estate in Fee Simple, Aun Flight Nº 538 131 is subject nevertheless to the reservations and conditions, if any, contained in the Grant hereiuafter referred to, and also subject to such piece of land situated encumbrances, liens, and interests as are notified hereon, in That , and County of Cumberland in the Municipality of Canterbury , Parish of I George , or thereabouts. containing One rood as shown on the Plan hereon, and therein edged red, being hot gl on a plan deposited in the hand Litles Office Sydney Nº 3862 and part of "Hirty acres ( portion 83 of parish ) delineated in the public Map of the said parish deposited in the Department of Lands originally granted to Francis Wilde by brown Grant dated the Mirilieth day of June one thousand eight hundred and twenty three In witness whereof, I have hereunto signed my name and affixed my Seal, this <u>Eighlunth</u> _____day of Deplember one thousand nine hundred and nine day of <u>September 1909</u>, of Buogden Signed the 18 in the presence of Deputy Registrar General.

NOTIFICATION REFERRED TO

dward Hyde as



Req:E406876 /Doc:CT 2001-70 /Rev:2-Oct-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:01 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H



FOLIO: A/952115

SEARCH DATE	TIME	EDITION NO	DATE
21/10/2013	11:18 AM	4	2/11/2009

LAND

_____

LOT A IN DEPOSITED PLAN 952115 LOCAL GOVERNMENT AREA CANTERBURY PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP952115

FIRST SCHEDULE

_____

#### W M RITCHIE PROPERTIES PTY LIMITED

(T AF86020)

SECOND SCHEDULE (2 NOTIFICATIONS)

 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
 AF38626 LEASE TO J. ROBINS & SONS PTY LTD EXPIRES: 30/6/2010.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

HAZ-DANIEL2-

#### PRINTED ON 21/10/2013



LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE -----21/10/2013 11:20AM

FOLIO: A/952115

____

First Title(s): SEE PRIOR TITLE(S)
Prior Title(s): VOL 14501 FOL 229

Recorded	Number	Type of Instrument	C.T. Issue
29/7/1989		TITLE AUTOMATION PROJECT	LOT RECORDED FOLIO NOT CREATED
22/9/1989		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
16/2/2005	AB292070	TRANSFER	EDITION 1
5/9/2005	AB745183	CHANGE OF NAME	EDITION 2
12/10/2009	AF38626	LEASE	EDITION 3
2/11/2009	AF86020	TRANSFER	EDITION 4

*** END OF SEARCH ***

HAZ-DANIEL2-

#### PRINTED ON 21/10/2013



FOLIO: B/952115

SEARCH DATE	TIME	EDITION NO	DATE
21/10/2013	11:23 AM	4	2/11/2009

LAND

_____

LOT B IN DEPOSITED PLAN 952115 LOCAL GOVERNMENT AREA CANTERBURY PARISH OF ST GEORGE COUNTY OF CUMBERLAND TITLE DIAGRAM DP952115

FIRST SCHEDULE

_____

#### W M RITCHIE PROPERTIES PTY LIMITED

(T AF86020)

SECOND SCHEDULE (2 NOTIFICATIONS)

 RESERVATIONS AND CONDITIONS IN THE CROWN GRANT(S)
 AF38626 LEASE TO J. ROBINS & SONS PTY LTD EXPIRES: 30/6/2010.

NOTATIONS

UNREGISTERED DEALINGS: NIL

*** END OF SEARCH ***

HAZ-DANIEL2-

#### PRINTED ON 21/10/2013



LAND AND PROPERTY INFORMATION NEW SOUTH WALES - HISTORICAL SEARCH

SEARCH DATE ------21/10/2013 11:23AM

FOLIO: B/952115

____

First Title(s): OLD SYSTEM
Prior Title(s): VOL 4817 FOL 19

Recorded	Number	Type of Instrument	C.T. Issue
21/8/1998		CONVERTED TO COMPUTER FOLIO	FOLIO CREATED CT NOT ISSUED
16/2/2005	AB292070	TRANSFER	EDITION 1
5/9/2005	AB745183	CHANGE OF NAME	EDITION 2
12/10/2009	AF38626	LEASE	EDITION 3
2/11/2009	AF86020	TRANSFER	EDITION 4

*** END OF SEARCH ***

HAZ-DANIEL2-

#### PRINTED ON 21/10/2013



Req:E404813 /Doc:CT 4817-19 /Rev:31-Dec-2008 /Sts:OK.OK /Prt:21-Oct-2013 11:24 /Pgs:ALL /Seq:1 of 2 Ref:HAZ-DANIEL2- /Src:H

Appn. No. 53.7.3 New South Wales. [CERTIFICATE OF TITLE.] Reference to last berlificate Vol. 2646 Fol. 33 REGISTER BOOK. Vol. 4817 Fol. 19 CANCELLED 0 ON ISSUE OF NEW FOLIO B 952115 Kelvin blive Goodevin of Belmore Garage Respictor Transferes under Justument of Transfer The C 493108 is now the proprietor of an estate in fee simple subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in Shal piece of land situated Parish of Mb George _____, and County of burnberband in the Muripality of barrelevery ____ containing One rood weerly two and dree quarters perches on there abouts as shower in the place hereour and thecerised ged red being part of Lots 92 and 93 in deposited whan the 3862 and being also prost of 30 acres ( Portion 83 of Parish ) originally granted to Francis wilde by brown Grand dated the 30th day of June 1823. In witness whereof I have hereunto signed my name and affixed my Seal, this Righlecuth day of January 1937 J.+ Ich edgard Signed in the presence of Roy to willio Registrar General No. 0 660605 dease dated gth Lebruary 1938 from the said delver Cleve yoodwin functh consent of mortgagees to Errol espect must 91 St Produced and empled 24 the may 1938 at 42 mts. follo clock in the for noon. Drummond REGISTR'R GENERAL 94 92 No. C 660606 DISCHARGE of within mortgage Canterbury Rd. dated 13th may 1938 No.C. 493109 Produced and entered_ 24 th may at 42 mb / 11 & dick in the fore noon LAND WITHIN DESCRIDED IS REGISTRAR GENERAL C493108 Scale 120 ft. to one inch. No: 0660607 DISCHARGE of within mortgage Notification referred to No.C. 493111 dand 16th may 1838 Produced and entered_ 1938 MORTGAGE dated 16th Movember 1936 at the mits fulle dock in the NO C 493109 from the said Helpin blive Goodwin to BANK OF NEW SOUTH WALES HA BK Pipqueed and entered REGISTRAR GENERAL RRnd January 1937 o'clock in the after hoon. No. 0660608 TRANSFER sated 16 th May 1938 from the said Relvin Clive Goodwin to William John Booth of stanmost Engineer. Den W Thes REGISTRAR GENERAL _of the land within described MORTGAGE dated 23rd November 1936 Produced and entered 24th May 1938 No. C 493111 from the said Kelvin blive Goodwin to Heather Joyce Goodwin of Chatewood Spinster at 42 mt hard o'dock in the have noon. REGISTRAR' GENERAL. November 1936 and entered 2 2nd January 1937 Finduced 3 4 o'clock in the after _________. at_ to thele REGISTRAR GENERAL

No. P F. 376332 TRANSFER daled 3rd January 1957 trom, the said Coliffy Mayonie Basth to No. C660609 MORTGAGE dated /6th may, 1938 from the said / Allan John Booth to Commonufealth Bank of Question - Lydney Atafford Ply himited of the land within described Produced and entered 11th January 1951 at 46 mto 1410 o'clock in the ford Produced and entered 24 th may 1938 nocn. 4 at 42mb Ho clock in the re Goon REGISTRAR GENERAL. REGISTRAR GENERAL. No. F982868 TRANSFER dated sock Occaled 1955 The within mentioned LEASE No. C 660605 From the said lydney Stafford my Limited & Galler Die (Australia) My Amited has expired by effluxion of time. gre Dated 4th June 1943 Vide D207064 9 of the land within described Produced and entered 17- Strender 1953 12 o'clock to the noon. Mallian Sopert m REGISTRAR GENERAL a . 11 etts d 1st February 1943 John Booth to r of Belmore C. D203649 REGISTRAR GENERAL. n th the consent of tor / u TRANSFER NO. 2731929 J. Robins & Sons Pty Limited is Produced 14th May 1944 and entered 4th fune 1943 o'clock in the Are noon. to chilis now the registered proprietor of the land within described V 7036467 REGISTRAR GENERAL Registered 28 - 3 -1980 No. D762990DISCHARGE of within mortgage No. 2660609 dated and Seconder 1347 Produced and entered 2nd Seconder 1947 ncoa.' 11 o'clock in the 4 REGISTRAR GENERAL end COMPUTER FOLIO NO FURTHER REGITTRAR PENEPAL DEALINGS TO BE REGISTERED. The within mentioned LEASE No. 1203 649 has expired by eilluxion of time Dated 23 rd feltruary vide 16128 Color REGISTRAR GENERAL 4th, Povember 194 ease dated No. J 780514 allians John yarage profrield from th nt rat 23rd telemarch 48 Principy 14.80 Produced 13 GA Edith Mayonie Booth, of Jaren Point, widow No. is now the registered Proprietors of the land within described in pursuance of the above Application Produced 6t October 1950 and entered 14th Movember 1950 noon o'clock mine 13 RÌ, REGISTRAR GENERAL No. 0F330066 SURRENDER of the within Lease No. 0780514 dated 30th March 1950 Produced 25 October 1950 and entered 2000 ctaler 1950 at 30 ants ht 20' clock in the after noon. Re REGISTRAR GENERAL

CERTIFICATE OF(C.) Rew South Males. (Peudae after Transfer N= 1 218991.) [App* No. 5373 _____ REGISTER BOOK, [Reference to last bertificate Vol. 2646 Folio 33 [Vol. 1587 ____ Folio 1744 MUUN wife of George Durie of Belmore Mining Manager by writer of Certificate of Title Volume 1587 Tolio 174 now surrendered as to residue after transfer No A 218991. - is now the proprietor of an Estate in Fee Simple, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, That_ liens, and interest as are notified hereon, in piece of land situated , Parish of St George _____, and County of Cumberland in the Manicipality of Carterbury____ containing Nove rood twenty two area three quarters perches -, or thereabouts, as shown on the Plan hereon, and therein edged red, being part of Lots 92 and 93 _____ on a Plan deposited in the Land Titles Office, Sydney, No. 3862 and also part of Thirty are (Portion 83 of Parish)_ delineated in the Public Map of the said parish - in the Department of Lands originally granted to Frances Wilder by Grown Grant dated the thirticth day of June one thousand Eight hundred and twenty three.

In witness whereof, I have hereunto signed my name and affixed my Seal, this Lebouary one thousand nine hundred and Sisteen

rineteenth day at

Signed the 19 day of February ____ 1916, "theeve in the presence of

All



Deputy Registrar General.

NOTIFICATION REFERRED TO

No. A 551595 TRANSFER dated 26th February 1920 from the said <u>Marion Durie To Eva Rae</u> Rowlandson Sillespie Wife of Thomas Robert James Sillespie of Belmore Acal estate agent of the land within described. M. Hai 213 Drummo at 32 mts pt 10 o'clock in the fore noon. 18 6. 112 in. (1 1920 TRAN CE att: 92 REGISTRAR GENERAL No. A 551596 NORTGAGE dated 2.6th Frebruary 1920 Canterbury Rd from the said Eva Rac Rowlandron Fillespie To the stand marian Durie Produced and entered 22 md march 1920 at 32 mits pt 10 0'cl Heleans scale: 120 ft. to 1 inch. Rund FRISTRAD GENERAL try

the said boa have how landown / Sillepie No. B 281644 MORIGAGE dated lette Schole from the said the Belmore Motor & Engineering dimited to the dustraham Bank of the of the land within described. Produced and entered 22 nd February 1921 Provinced and entered 20th September at 55 mts pt 2 o'clock in the after noon. at pouls for 3 o'clock in the after noon. Articleans REGISTRAL GENERAL No A bbs bb7 MORIGAGE dated 24 " January 1021 No A bbs bb7 MORIGAGE dated 24 " January 1021 No presoid Thilip Allan Lotze To Tomma Me Gregor wife of John Me Gregor of Melbourne in the State of Victorice bournerclas Frazieller No. 0.32.74.3 DISCHARGE of within mortgage 8593258 dated 20th Noverflees _1930 Produced 27th Movember 1930 and entered 27th Movember 1930/ Produced and entered 22nd February 1921 and po 3 o'clock in the office noon. at 20 mts pt 10 0'olock in the fore noon. Anteleauser) Mayto REGISTRAR GENERAL GENERAL No. C 32744 IRANSFER dated 20 m Rovember 19 30 from the said The Australian Bank of Commerce No. A 845828 DISCHARGE of within Mortgage A bh8 bh7 157 dated 9th August 1922 16th August 1927 and er Limited most agers exercising prover of sele alfred Charles I den of Bedrove Blueder Proauced_ 19% and entered of the Land within described 16 ta August 1927 Produced and entered 27th November 1930 at 52 mile Ju 2 - o'clock in the after noon. at 20 mm pt 10 o'clook in the fore noon. Att Cleanth REGISTRAR GENERAL. REGISTRAR GENERAL. No. 0 3274 5 MORTGAGE dated 20 Movemb 19 3. from the said alfred 6 harles & den to the said The australian Bank of Commerce Alfrited DISCHARGE of within Mortgage No. A 915561 No A 551596. dated 10t Okardy 1983 Produced and entered 2 1th November 19 30 Produced 5 14. March 1923 and entered at 20mits pt 10 o'clock in the fore - 11000. 5th March -19 23 at 18 mits pt 2 o'clock in the after noon. REGISTRAR CHERAL And Cleaning 2 No C 150 247. Appointment of Receiver dated 11th November 1932 by The Australian Bank of Commerce Limited (in liquidation) of EGISTRAR GENERAL Milton Forbes Major Johnson of Sydney Chartered Accountant No. A. 915562. MORTGACE dated 1st March 1983 from the said Thilip Allan Lotge To the mid Marion Durie in respect of the within Mortgage Mo. C32745. Produced 15th November 1932 and entered 22 nd November 1932 at 12 oclock noon. Hoy W. Willie Registrar General * Produced and entered 5 H. Sharely 1923 at 15 muts pt 2 o'clook in the after noon. Botheleaur No. C187477 Lease dated 12th from the said the Australian Bank of REGISTRAR GENERAL. higuidation basing) to Charles Robert Macinton and Kelling blive Joodwin of Willand ____D I S C H A R G E of within Mortgage No. B 205143. Produced 26th Au in of Willoughby, <u>A 915562</u> dated 16 dated 19 25 and eniered Produced 23rd april 1925 and entered 14th Suguel 1933 11 o'clock in the free noon. at 19 2.5 23 rd april oy W. Willing at 13 mts pt 2 o'clock in the after noon. AnAtalian (1) REGISTRAR GENERAL. REGISTRAR GENERAL. The within mentioned LEASE No. C. 87 14 7.7 has expired by effluxion of time. No. B. 5 9 5 258. MORTGAGE dated 23rd Movember 1927. from the said Philip Allan Labe to The Australian Bank of Commerce Limited. Dated 31 st December 1936 Vide CH 9310to theles Produces and entered 1st December 1924. REGISTRAR GENERAL BAR GA at 32 mb pr 30' clock in the allow noon. 220 No. CH93 108 TRANSFER dated 16t Newsmiles 1936 andayton from the said The Australian Bank of Commerce Limited (in Liquidation) (mortgages ture cosing former of sale) 73 & clown of the line foodwithin deting REGISTRAR GENERAL _of the land within described No. 8 881643 TRANSFER dated 18th Phylip Allan Loty to the 1929 Produced 30th November 19 Ha and from the said Pholat 1936 entered____ 31st December elmond Edgineering Whorks dimited at 2 o'clock in the noon. As to land in this transfer of the land within described Miscolicata is cancelled Theles 10-Produced and entered Soth and new Certificate issued at 55 mts /12 o'clock in the 1.8 Vol. 1481 Fol. 19 3 _1100A REGISTRAR GENERAL, le stayton OUTH REGISTRAR GENERAL

## CERTIFICATE R

(C.)

St.

91

ZIZPO

New South Males.

[App" No. 5373. [Reference to Last Certificate [Vol. 158']. Folio 1'14



REGISTER BOOK. <u>2646 Folio</u> 26

CANCELLED W

Marion Hail of Belinore, Spinister Transferce under Instrument of Transfer from Marrow Durie NA. 218 991 is now the proprietor of an Estate in Fee Simple, subject never heless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances; That. liens, and interest as are notified hereon, in piece of land situated in the Municipality of Canterbury, Parish of St George , and County of Winberland containing Sweerly one and three quarters perches , or thereabouts, as shown on the Plan hereon, and therein edged red, being part of Loto 92 and 43. on a Plan deposited in the Land Titles Office, Sydney, No. 3802 and also part of Thurky acres (Portion 83 of Jarish) delineated in the Public Map of the said Parish in the Department of Lands originally granted to Francis Wilde by known Brand dated the thicketh day of June one thousand eight hundred and liventy three

In witness whereof, I have hereunto signed my name and affixed my Seal, this - rinetenth day of February one thousand nine hundred and diater

day of Jobran _ 1916, Signed the in the presence of



Ton

Deputy Registrar General.

NOTIFICATION REFERRED TO

Bothwell of Belmore man now the registered proprietor of the land



WPty Contrat of Phy Test nicht de 20 DEALEAT No ... M 1421 . has been withdrawn M190 Entered 22 nd March now the registered proprietor of the land within described M 191065 19 7/05 See. 26) See TRANSFER No. 130687 dated 34 th 1968 water Entered. REGISTRAR GENERAL DM ulates MIGI MORTGAGE No. L748641 has been discharged. REGISTRAR GENERAL M191066 Entered 22M Match See. 19 7/ W No. LIS4156 MORTGAGE dated 16t September 1968 watso co Mustafa Nuri of Sydney, Packer REGISTRAR GENERAL Entered 10th October Patrick Envis Martin of Carterbury Duilple le now the registered proprietor of the land within described. M191067 REGISTRAR GENERAL and 19th Jebrucy 1971 See TRANSFER No. M 191067 MORTGAGE No. 4.184156 has been discharged. Entered 32.4 March 19 11 L748640 See. Februaryo 10 Entered watso REGISTRAR GENERAL REGISTRAR GENERAL No. M191063 February 19TI 19.th MORTGAGE dated .... No. 1.74864-1 MORIGAGE dated February 1970 M REL (ATT M co Conda Simile The commercial Ban to. M191068 Australia Limited Entered_22 nd March Entered 26 February 71 19 19 16 waternutates REGISTRAR GENERAL REGISTRAR GENERAL MORTGAGE No. M191068 has been discharged. 18 th September 1970 M14121 baveat M498210 Hovembas Entered Q lies 197 water aulation REGISTRAR GENERAL MORTGAGE deced 16th Septemberg No.M498211 M9157 Careat dated 24th a Sustalia the Octobe Encored 22nd November Cancelled \$156905 Jatan-1 9-7-1981 REGISTRAR GENERAL CAVEAT NO MAIST has been withdrawn WPI Entered 22 nd March 1971 MIGHOGA M1910 NO. P803262 CAVEAT DATED 36TH JUNE 1976



Caveat No. R338048 by The Official Receiver + 38 Bankrupte 2646-26 V 1979 1 Registered 3-10-14 General Withdrawn Keg15trar 5569061 -1981 CAVEAT R922456 & He Mat ly May Elizabe the been Regulated 14-7-1980 Withdrawn S569083 9-7-1981 Dein REGISTRAR GENERAL RECISTERED PROPRIETOR John Martin Halter by Transfel by Power of Sale S56 90 83 Registered 9-7-198 . The land in this depling is now somprised in Vol.1450 Pet. 229 inte and the REGISTRAR GENERAL and the second and + manual Pill



Req:E405542 /Doc:CT 2646-26 /Rev:31-Oct-2008 /Sts:OK.OK /Prt:21-Oct-2013 14:11 /Pgs:ALL /Seq:4 of 4 Ref:HAZ-DANIEL2- /Src:H





RTIFICATE (C.) New South Wales. [App" No. 5373 ] REGISTER BOOK, [Reference to last Certificate ] 587 1486 Folio 184 ] [Vol. St 907 Wald of Woollahra Jeweller Transferce under Instrument Perpetual Trustee Company Timited numbered 400487 now the proprietor of an Estate in Fee Simple, subject nevertheless to the reservations and conditions, if any, contained in the Grant hereinafter referred to, and also subject to such encumbrances, liens, and interests as are notified hereon, in _______ piece of land situated in the Municipal District of Canterbury, Parish of St George -, and County of Cumberland Two roods four and one half perches containing , or thereabouts. as shown on the Plan hereon, and therein edged red, being Lot 92 and part of Lot 93 on a Plan deposited in the Land Titles Office, Sydney, numbered 3862 and also part of Thirty acres (Portion 83 of Parish) delmeated in the Public Map of the said Parish deposited in the Department of Lands originally granted to Francis Wilde by Grown Grant_ dated the Thirtieth day of June One Thousand eight hundred and twenty three Sun In witness whereof, I have hereunto signed my name and affixed my Seal, this .... ...day of envery one thousand nine hundred and five Signed the ... in the presence of Deputy Registrar General. NOTIFICATION REFERRED TO. 5 91 97 ond 03.2r. 42P S OF THE LAND withen DESCRIBED Drumm 38 ft. 11 34 PRODUCED & ENTERED 13 September 228ft 81 19/0 AT22mbiff 3) 'CLOSK IN THE after HOON Calac Dumos DEPUTY REGISTRIA GENERAL. 94 Rª Bu Canterbury No. A 218991 TRANSFER dated 12" December 1915 from the said marion Durie To Marion Hair Spinster 0 part of the land within described Produced and entered 18 uares 1916 12 O'Block noon Cancelled & Certificate MA. reliau Val. 2646 Fol. 2 REGISTRAR GENERAL /obd/

Req:E406877 /Doc:CT 1587-174 /Rev:4-Sep-2008 /Sts:OK.OK /Prt:22-Oct-2013 09:02 /Pgs:ALL /Seq:2 of 2 Ref:HAZ-DANIEL2- /Src:H

• • • This Deed is Cancelled and Certificate of Title issued Vol 2646 Fol 33 for residue Markeliacus A218992 



Req:R420607 /Doc:DL AB745183 /Rev:09-Sep-2005 /Sts:NO.OK /Prt:21-Oct-2013 11:17 /Pgs:ALL /Seq:1 of 2 .Ref:HAZ-DANIEL2- /Src:H

	Form: 10CN Release: 1 www.lpi.nsw.com		CHANGE OF NAM New South Wales Real Property Act 1900	AB7451	
(A)		Torrens Titl	TE: this information is legally required and will be le , 1/533919, 2/533919, A/952115, B/9	· · · · · · · · · · · · · · · · · · ·	
(B)	REGISTERED DEALING	Number	Torrens	; Title	
(C)	LODGED BY	Delivery Box <b>406T</b>	Name, Address or DX and Telephone HOLMAN WEBB DX 233 SYDNEY (02) 9390 8000 Reference: LJJ.LUT383/1	123279L	CODE CN
(D)	REGISTERED PROPRIETOR	SANDLER	OF BOSTON PTY LTD ACN 000 126 787		<u></u>
(E)	NEW NAME	LUTMAR H	HOLDINGS PTY LIMITED ACN 000 126 78	7	

- (F) I, the registered proprietor referred to above, apply to have my new name recorded in the Register in respect of the above land
- (G) STATUTORY DECLARATION BY THE APPLICANT

FREDERICK SELDEN 1X GRAEME

solemnly and sincerely declare that-

- 1. I am a Director of the registered proprietor
- Attached is a certified copy of the Certificate of Registration on Change of Name dated 1 August 2005

and I certify this application to be correct for the purposes of the Real Property Act 1900. in Mew. South Wales osebury Made and subscribed at >in the presence ofon Signature of witness: Signature of applicat ELIZABETH BARTH Name of witness:

Address of witness:

HAIG STREET BEYLEY

2207 NSW

Qualification of witness: Justice of the Peace

Req:R420607 /Doc:DL AB745183 /Rev:09-Sep-2005 /Sts:NO.OK /Prt:21-Oct-2013 11:17 /Pgs:ALL /Seq:2 of 2 REF: HAZ-DANIEL2- /STC: H.Y THIS TO BE A TRUE COPY OF THE CERTIFICATE

OF REGISTRATION ON CHANGE OF NAME AS REFERRED TO IN FORM IOCN STATED 30 AUGUST 2005

Ley are -

Lee John Jackson a solicitor holding a current practising certificate under Part 3 of the Legal Profession Act, 1987 Level 17, 123 Pitt Street, Sydney 2000

Remove this top section if desired before framing

# **Certificate of Registration** on Change of Name

This is to certify that

------

SANDLER OF BOSTON PTY LTD

GRANT THORNTON ATTN: ANDREW ARCHER LOCKED BAG Q800 QUEEN VICTORIA BUILDING NSW 1230

Australian Company Number 000 126 787

did on the first day of August 2005 change its name to

### LUTMAR HOLDINGS PTY LIMITED

Australian Company Number 000 126 787

The company is a proprietary company.

The company is limited by shares.

The company is taken to be registered under the Corporations Act 2001 in New South Wales and the date of commencement of registration is the fourth day of January, 1954.

> Issued by the Australian Securities and Investments Commission on this first day of August, 2005.

Jeffrey Lucy Chairman / Sr. 2 of 2



.

. . . .

Req:R420621 /Doc:DL AB292070 /Rev:21-Feb-2005 /Sts:NO.OK /Prt:21-Oct-2013 11:17 /Pgs:ALL /Seq:1 of 1 Ref:HAZ-DANIEL2- /Src:H

	Form: 01T	TRANSFER					
	Release: 2.1			KARSFEI Iew South Wales		B29207	<b>ND</b>
	www.lpi.nsw.gov	L'	Rea	I Property Act 190	00	·····	
		PRIVACY NOTE: this information is legally required and will become part of the public record					
	STAMP DUTY	Office of Sta	te Beverenceusenerly W Treasury		03-	02-2005	0002453890-005
		YEAR 1000 - 2005	P24			TION 281-ORIGINAL DUTY PAYABLE	
		, Asst details:	$\frac{162 \text{ y}}{162 \text{ y}}$		NU		
		10 24	5 38 90				
7)	TORRENS TITLE	91/3862,	1/533919, 2/5339	19, A/952115,	, B/952115 (fc	ormerly Vol 7	700
		F01 222	, Vol 11098 Fol 2	218 & 219, Vo	ol 14501 Fol	229 & Vol 48	
3)	LODGED BY	Delivery	Name, Address or DX a	nd Telephone	123	32.79L	CODES
		Box	HOLMAN WEBB DX 2 (02) 9390 8000	33 SYDNEY			
		406T	(02) 5550 0000				TW
			Reference: LJJ.RIT7	92/6	······································		(Sheriff)
C)	J ROBINS & SONS PTY LTD ACN 000 005 005						
))	CONSIDERATION	The transferor	r acknowledges receipt of th	ne consideration of	\$ 1.00		and as regards
E)	ESTATE	the land spec	ified above transfers to the	e transferee an esta	ate in fee simple		
F)	SHARE TRANSFERRED	1.52 1. 1.257 5. MASS - P		/ M/ A 11 M	101 X X X X X		and the second sec
<b>3</b> )		Encumbrance	es (if applicable):	<i>, ,</i> , , ,		· · · · ·	SPECTRON STOR
H)	IRANSFEREE ACN SANDLER OF BOSTON PTY LTD 000 126 787						
		SANDLER	OF BOSION PII LID	^ 000 120 /8/ ^		Construction of the second s	The source of the second
					(ILL)		TY LTD. 7 CM
I)		TENANCY:			CAR ST PART	NAVA	ST CAN
J)	DATE	1 7.01	7 2004		Comi Comi	mon) T M 2	Comment
	Certified correct		ses of the Real Property Ac	ct 1900			Deal Ist
	and executed on	behalf of the o	corporation named below b				
	pursuant to the a	uthority specif	mature(s) appear(s) below fied.	000 005 005	م منها الم الم الم الم الم الم الم الم الم ال		
			SONS PTY LTD ACN 27 of the Corporat		1, ,		
	Signature of auth	orised person	DER	Signa	ature of authorised j	person:	linger,
	Name of authoris				CHRIS JOHNI e of authorised pers	STON PAR	5 JOHNSTO
	Name of authoris Office held:	sed person:	TISITISA Coto	TRECCE Offic		Company	STOHNSTON SECRETAR
						/	/
						es of the Real Prope se signature appear	
				1900	by the person who	se signature appear	s below.
		<i>:</i>		Sigr	nature:	Lee ron	4 x
						/• •	
					natory's name: natory's capacity:	Lee John J transferee's so	
				Page 1 of <u>1</u>			
	All handwriting	must he in bl	ock capitals	number additional pages sequentially	In the second	and Property I	nformation NSW.
	i in nanuwi tung		sen eupitaio.	Č	T SIGHTED	+	
				G	anc. & Ret		



NOTE: ENTRIES RULED THROUGH AND AUTHENTICATED BY THE SEAL OF THE REGISTRAR GENERAL ARE CANCELLED
		a a di di serre e e e e	Acres 1		600 W M			
		n		10 Mar 10				i .
	1.1	0၂ ၂		$\mathbf{C}$	1 1.1 1.1 1.2 1.	(1) (2) (3)	0,	t.
n (.	1 C	10 J.C. 11 J						-
	1.4	1. Cher 14	L I T .		<b>L</b>	12 A B A A	i na salat di k	6 F. T
	and the second second	1961 - S.A.C. (*		C 10 - 10 - 10	🕿 - Statistic	지 않는 것 같아.		12

(Page 2 of 2 pages)

		Rev:22-Dec-2010 /Sts:OK.SC /Prt:21-Oct-2013 11:24 /Pgs:ALL /Seq	ζ. <i>V</i> Υ. ψ
			1_2
		NOTATIONS AND UNREGISTERED DEALINGS	
		가 있는 것이 있다. 가지 않는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 같은 것이 있는 것	
			2 2 2 2
		는 사람이 있는 것이 가지 않는 것이 있는 것이 있는 것이 있다. 가지 않는 것이 있는 것 같은 것이 같은 것이 있는 것이 같은 것이 있는 것	
		가 있는 것에서 가장에 가장하는 것이 있는 것이 있다. 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 있는 것이 없다. 것이 같은 것이 같은 것이 없다. 것이 같은 것이 없는 것이 없는 것이 없는 것이 있는	
CANCELLA	Registin General	<b>BVRTICULARS</b>	
·		SECOND SCHEDULE (continued)	
		가 있는 것은	
	SEE AUTO FOLIO		
		에는 것은 것은 것이 같아요. 이는 것은 것이 있는 것은 것을 가지 않는 것은 가 같이 같은 것은	
		환환 관계 관계 등 여러 전체를 알려 있는 것이 가지만 하는 것이다. 이번 이는 것이 가지만 하는 것이다. 2014년 2017년 - 11월 2017년 2017년 11월 2017년 2017년 11월 2017년 2	
	ATTACKING		
	CANCELLEU		
-			
		obins & Sons Pty Limited by Transfer X241342. Registered 7-12-1987.	96.00
· · · · · · · · · · · · · · · · · · ·		.com Pty. Limited by Transfer 5735295. Registered 23-10-1981.	₩ <b>9</b>
Acgistrar (		REGISTERED PROPRIETOR	
		FIRST SCHEDULE (continued)	3 S

## Contract For Sale of Land

*Privato Treaty

VENDOR'S AGENT.

*Delete words not

L. J. HOOKER LIMITED AUSTRALIA'S LEADER IN REAL ESTATE

Head Office: KING GEORGE TOWER, CNR. KING & GEORGE STS., SYDNEY

With Offices throughout Australia offering a complete Real Estate Service

DESCRIPTION OF PROPERTY

ALL THAT piece or parcel of land at the corner of Canterbury Road and Drummond Street, Belmore in the Municipality of Canterbury Parish of St. George County of Cumberland being part of Lots 92 & 93 in Deposited Plan 3862 being the whole of the land comprised in Certificate of Title Volume 4817 Folio 19 TOGETHER WITH all improvements erected thereon except such as are to be removed by the Vendor prior to completion.

AUCTION CONDITIONS - Upon a sale by auction:

(a) the highest bidder shall be the Purchaser. In case of any dispute the property shall be put up again at any former bidding and no bidding shall be retracted

*Public Auction.

- (b) the sale is subject to a reserve price and the right to bid is reserved on behalf of the Vendor.
- (c) upon the fall of the hammer the Purchaser shall sign the following agreement the conditions of which, with these conditons, are the conditions of the sale by auction.

or's	AGREEMENT made	the				day of		1979.
ame, as and ation.	BETWEEN	CALTEX OIL Street, Sy	(AUSTRALIA) dney.	PTY.	LIMITED	of 167	7-187 Kent	
							(herein called the Vendor) of the	one part

AND

full name, address an

* Delete words not

*Delete words not

full nar address

(herein called the Purchaser) of the other part

(\$

Russ. R

WHEREBY the Vendor agrees to sell and the Purchaser agrees to purchase, if more than one as *JOINT TENANTS/*TENANTS IN COMMON IN THE FOLLOWING SHARES:

with joint and several liability under this agreement, the property above described (herein referred to as "the property") for the sum of

upon and subject to the following terms and conditions: -

1.- The Purchaser shall upon the signing of this agreement pay as a deposit to the Vendor's Agent herein named as stakeholder the sum of

(\$ which shall vest in the Vendor upon and by virtue of completion and which shall be accounted for to the Vendor upon receipt of an order from the Purchaser or his Solicitor authorising such payment. The deposit may be paid by cheque but if the cheque is not honoured on presentation the Purchaser shall immediately and without notice be in default under this agreement.

The balance of the purchase price shall be paid as stipulated in the First Schedule hereto. Any moneys payable to the Vendor hereunder by the Purchaser or the Agent shall be paid to the Vendor's Solicitor or as he may direct in writing.

2.- The title to the land is under. *THE REAL PROPERTY ACT, 1900, (not being Qualified Title or Strata Title)

*CTDATA TITLE (Strata Titles Act, 1973 (as amonded))

*OLD SYSTEM *QUALIFIED TITLE (Part IVA of the Real Property Act and Old System)

*CROWN LANDS (CONSOLIDATION) ACT, 1913

*OTHER ACT RELATING TO CROWN LANDS, namely

3.- After the date of this agreement and within a reasonable time after written request by the Purchaser or prior thereto if the Vendor so desires the Vendor shall furnish to the Purchaser a written statement of his title which shall comprise:-

- (a) FOR LAND UNDER THE REAL PROPERTY ACT (including Strata Title): particulars of title and the form of any restrictive covenant easement or other interest to be created by the transfer sufficient to enable the Purchaser to prepare the transfer. The Purchaser shall not be entitled to an abstract of any document affecting the title. Any instrument in respect of which a caveat is entered on the register shall, if in the possession of the Vendor or of any mortgagee of the property, be produced to the Purchaser free of charge;
- (b) FOR LAND UNDER OLD SYSTEM TITLE: a proper abstract of his title together with the form of any restriction covenant easement or other interest to be created by the conveyance. For the purpose of this clause a proper abstract of the Vendor's title may as to relevant documents to be abstracted comprise or include photographic copies (being them selves legible) of such documents PROVIDED THAT where the abstract includes any photographic copy of a document of all the selves legible). the Vendorshall furnish as part of his abstract and in-addition to the foregoing requirements a chronological index of all the facts events and documents which comprise his title stating as regards the documents to be so indexed brief particulars

and motion fiii) the nortice to the doormant and find the registration details C Alexandree 1 (11) ite

such installations and services or on the ground that any water or sewerage main or any underground surface storm water drain or any gas or electric light installations and services pass through over or under the subject land or should any manhole or vent be on the subject land.

12. It is expressly agreed by both parties hereto that twenty-one (21) days shall be reasonable and adequate time for the insertion in any notice served by one party upon the other requiring completion of this Contract.

13. Without in any manner negating, limiting or restricting any rights or remedies which would have been available to the Vendor at Law or in Equity had this special condition not been included herein should the Purchaser prior to completion:-

- (a) Die or become mentally ill, then the Vendor may rescind the within Contract by notice in writing to the Purchaser's solicitor named herein and thereupon the provisions of Clause 20 hereof shall apply; or
- (b) Be declared bankrupt or enter into any scheme or make any assignment for the benefit of creditors, or being a company resolve to go into liquidation or have a petition for the winding-up of the Purchaser presented or enter into any scheme of arrangement with its creditors under Part 7 of the Companies Act, 1961, (as amended) or should any liquidator, receiver or official manager be appointed in respect of the Purchaser then the Purchaser shall be deemed to be in default hereunder.

14. In addition to the modes of service referred to in Clause 22 hereof, service of any notice or document under or relating to this agreement shall be sufficient service on a party if served on its solicitor by delivering such notice or document to that solicitor's document exchange box.

_____It is hereby agreed and acknowledged that the property 15. sold to the Purchaser pursuant to this Contract does not comprise or include the Equipment listed hereunder which Equipment is presently installed in and upon the property and which, notwithstanding any Rule of Law or Equity to the contrary, is and shall remain at all times the property of the Vendor who shall have the right to enter the property and remove, repair, replace and/or abandon any of such equipment at any time upon reasonable notice AND the Purchaser further acknowledges that until such Equipment is removed by the Vendor, it shall hold the Equipment as bailee for and on behalf of the Vendor. The rights conferred and the obligations imposed by this clause shall not merge on completion but shall enure for the benefit of the parties. The equipment referred to above comprises the following:-

- ** l x Hoist No. 2393
  - 2 x Hoists (no numbers)
  - 1 x Compression and Blower No. 7229
  - l x Grease Pump
  - 1 x Grease Reel
  - 4 x Single Electric pumps Nos. 60099,
    - 60307, 61371 and 63184

1 x Dual electric pump No. 60167/8 5 x 455 to 900 litre tanks 1 x 5,400 litre underground tank 1 x 11,900 litre underground tank 1 x 16,470 litre underground tank 1 x 20,140 litre underground tank 1 x Banjo sign complete 6 x 110 litre highbays 1 x 273 litre highboy 1 x Office safe No. 14293

16. The Purchaser acknowledges that use of the property by the Vendor, its servants, licensees or agents as a petrol service station and automotive workshop will cease on or prior to completion <u>AND</u> that the Vendor does not warrant or guarantee the continued use of the property after completion as a petrol service station and/or automotive workshop nor the supply from any source whatsoever of petrol and petroleum products either to the property or to the Purchaser.

.

- 4 -





## **APPENDIX D**

Sale Contract provided by J. Robins & Sons Pty Ltd

## Contract For Sale of Land

*Privato Treaty

VENDOR'S AGENT.

*Delete words not

L. J. HOOKER LIMITED AUSTRALIA'S LEADER IN REAL ESTATE

Head Office: KING GEORGE TOWER, CNR. KING & GEORGE STS., SYDNEY

With Offices throughout Australia offering a complete Real Estate Service

DESCRIPTION OF PROPERTY

ALL THAT piece or parcel of land at the corner of Canterbury Road and Drummond Street, Belmore in the Municipality of Canterbury Parish of St. George County of Cumberland being part of Lots 92 & 93 in Deposited Plan 3862 being the whole of the land comprised in Certificate of Title Volume 4817 Folio 19 TOGETHER WITH all improvements erected thereon except such as are to be removed by the Vendor prior to completion.

AUCTION CONDITIONS - Upon a sale by auction:

(a) the highest bidder shall be the Purchaser. In case of any dispute the property shall be put up again at any former bidding and no bidding shall be retracted

*Public Auction.

- (b) the sale is subject to a reserve price and the right to bid is reserved on behalf of the Vendor.
- (c) upon the fall of the hammer the Purchaser shall sign the following agreement the conditions of which, with these conditons, are the conditions of the sale by auction.

or's	AGREEMENT made	the				day of		1979.
ame, as and ation.	BETWEEN	CALTEX OIL Street, Sy	(AUSTRALIA) dney.	PTY.	LIMITED	of 167	7-187 Kent	
							(herein called the Vendor) of the	one part

AND

full name, address an

* Delete words not

*Delete words not

full nar address

(herein called the Purchaser) of the other part

(\$

Russ. R

WHEREBY the Vendor agrees to sell and the Purchaser agrees to purchase, if more than one as *JOINT TENANTS/*TENANTS IN COMMON IN THE FOLLOWING SHARES:

with joint and several liability under this agreement, the property above described (herein referred to as "the property") for the sum of

upon and subject to the following terms and conditions: -

1.- The Purchaser shall upon the signing of this agreement pay as a deposit to the Vendor's Agent herein named as stakeholder the sum of

(\$ which shall vest in the Vendor upon and by virtue of completion and which shall be accounted for to the Vendor upon receipt of an order from the Purchaser or his Solicitor authorising such payment. The deposit may be paid by cheque but if the cheque is not honoured on presentation the Purchaser shall immediately and without notice be in default under this agreement.

The balance of the purchase price shall be paid as stipulated in the First Schedule hereto. Any moneys payable to the Vendor hereunder by the Purchaser or the Agent shall be paid to the Vendor's Solicitor or as he may direct in writing.

2.- The title to the land is under. *THE REAL PROPERTY ACT, 1900, (not being Qualified Title or Strata Title)

*CTDATA TITLE (Strata Titles Act, 1973 (as amonded))

*OLD SYSTEM *QUALIFIED TITLE (Part IVA of the Real Property Act and Old System)

*CROWN LANDS (CONSOLIDATION) ACT, 1913

*OTHER ACT RELATING TO CROWN LANDS, namely

3.- After the date of this agreement and within a reasonable time after written request by the Purchaser or prior thereto if the Vendor so desires the Vendor shall furnish to the Purchaser a written statement of his title which shall comprise:-

- (a) FOR LAND UNDER THE REAL PROPERTY ACT (including Strata Title): particulars of title and the form of any restrictive covenant easement or other interest to be created by the transfer sufficient to enable the Purchaser to prepare the transfer. The Purchaser shall not be entitled to an abstract of any document affecting the title. Any instrument in respect of which a caveat is entered on the register shall, if in the possession of the Vendor or of any mortgagee of the property, be produced to the Purchaser free of charge;
- (b) FOR LAND UNDER OLD SYSTEM TITLE: a proper abstract of his title together with the form of any restriction covenant easement or other interest to be created by the conveyance. For the purpose of this clause a proper abstract of the Vendor's title may as to relevant documents to be abstracted comprise or include photographic copies (being them selves legible) of such documents PROVIDED THAT where the abstract includes any photographic copy of a document of all the selves legible). the Vendorshall furnish as part of his abstract and in-addition to the foregoing requirements a chronological index of all the facts events and documents which comprise his title stating as regards the documents to be so indexed brief particulars

and motion fiii) the nortice to the doormant and find the registration details C Alexandree 1 (11) ite

such installations and services or on the ground that any water or sewerage main or any underground surface storm water drain or any gas or electric light installations and services pass through over or under the subject land or should any manhole or vent be on the subject land.

12. It is expressly agreed by both parties hereto that twenty-one (21) days shall be reasonable and adequate time for the insertion in any notice served by one party upon the other requiring completion of this Contract.

13. Without in any manner negating, limiting or restricting any rights or remedies which would have been available to the Vendor at Law or in Equity had this special condition not been included herein should the Purchaser prior to completion:-

- (a) Die or become mentally ill, then the Vendor may rescind the within Contract by notice in writing to the Purchaser's solicitor named herein and thereupon the provisions of Clause 20 hereof shall apply; or
- (b) Be declared bankrupt or enter into any scheme or make any assignment for the benefit of creditors, or being a company resolve to go into liquidation or have a petition for the winding-up of the Purchaser presented or enter into any scheme of arrangement with its creditors under Part 7 of the Companies Act, 1961, (as amended) or should any liquidator, receiver or official manager be appointed in respect of the Purchaser then the Purchaser shall be deemed to be in default hereunder.

14. In addition to the modes of service referred to in Clause 22 hereof, service of any notice or document under or relating to this agreement shall be sufficient service on a party if served on its solicitor by delivering such notice or document to that solicitor's document exchange box.

_____It is hereby agreed and acknowledged that the property 15. sold to the Purchaser pursuant to this Contract does not comprise or include the Equipment listed hereunder which Equipment is presently installed in and upon the property and which, notwithstanding any Rule of Law or Equity to the contrary, is and shall remain at all times the property of the Vendor who shall have the right to enter the property and remove, repair, replace and/or abandon any of such equipment at any time upon reasonable notice AND the Purchaser further acknowledges that until such Equipment is removed by the Vendor, it shall hold the Equipment as bailee for and on behalf of the Vendor. The rights conferred and the obligations imposed by this clause shall not merge on completion but shall enure for the benefit of the parties. The equipment referred to above comprises the following:-

- ** l x Hoist No. 2393
  - 2 x Hoists (no numbers)
  - 1 x Compression and Blower No. 7229
  - l x Grease Pump
  - 1 x Grease Reel
  - 4 x Single Electric pumps Nos. 60099,
    - 60307, 61371 and 63184

1 x Dual electric pump No. 60167/8 5 x 455 to 900 litre tanks 1 x 5,400 litre underground tank 1 x 11,900 litre underground tank 1 x 16,470 litre underground tank 1 x 20,140 litre underground tank 1 x Banjo sign complete 6 x 110 litre highbays 1 x 273 litre highboy 1 x Office safe No. 14293

16. The Purchaser acknowledges that use of the property by the Vendor, its servants, licensees or agents as a petrol service station and automotive workshop will cease on or prior to completion <u>AND</u> that the Vendor does not warrant or guarantee the continued use of the property after completion as a petrol service station and/or automotive workshop nor the supply from any source whatsoever of petrol and petroleum products either to the property or to the Purchaser.

.

- 4 -





## **APPENDIX E**

WorkCover NSW Information





WorkCover New South Wales, 400 Kent Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

THIS SIGNED DECLARATION SHOULD BE RETURNED TO: (please do not fax)

Licence No. 35/018247

## APPLICATION FOR RENEWAL OF LICENCE TO KEEP DANGEROUS GOODS



ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER

DECLARATION: Please renew licence number 35/018247 to 6/02/2002 . I confirm that all the licence details shown below are correct (amend if necessary).

(Signature)

for: ROBINS J & SONS P/L

TARA MELLINSH (Please print name)

(Date signed)

Enquiries: ph (02) 9370 5187 WorkCover New South Wales fax (02) 9370 6104 Dangerous Goods Licensing Section **GPO BOX 5364** SYDNEY 2001 Details of licence on 26 March 2001 Expiry Date 6/02/2001 Licence Number 35/018247 ACN 000 005 005 ROBINS J & SONS P/L Licensee Postal Address: 677 CANTERBURY RD BELMORE NSW 2192 MELLUISH Licensee Contact TARA SMALLIE Ph. 9789-1111 Fax. 9718 2234 9789 9854 Premises Licensed to Keep Dangerous Goods **ROBINS J & SONS P/L** 677 CANTERBURY RD BELMORE 2192 Nature of Site FOOTWEAR MANUFACTURING Major Supplier of Dangerous Goods NOT APPLICABLE MELLUISH Emergency Contact for this Site TARA SMARLE Ph. 9789 1111 Site staffing 16 HRS 5 DAYS + HALF DAY 7899888 **Details of Depots** Qty Goods Stored in Depot Depot Type Depot No. 2000 L Class 6.1 ROOFED STORE 1 100 L UN 1593 DICHLOROMETHANE 1800 L UN 2498 1, 2, 3, 6-TETRAHYDRO, BENZALDEHYDE 250 L Class 3 FLAMMABLE LIQUIDS CABINET . 10 100 L **UN 1133 ADHESIVES** 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 100 L Class 3 FLAMMABLE LIQUIDS CABINET 11 50 L **UN 1133 ADHESIVES** 50 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L FLAMMABLE LIQUIDS CABINET Class 3 2 100 L UN 1133 ADHESIVES 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L

Class 3

100 L

Form DG10

3

FLAMMABLE LIQUIDS CABINET

**UN 1133 ADHESIVES** 



WorkCover New South Wales, 400 Kent Street, Sydney 2000. Tel: 9370 5000 Fax: 9370 5999 ALL MAIL TO G.P.O. BOX 5364 SYDNEY 2001

#### Licence No. 35/018247

APPLICATION FOR RENEWAL OF LICENCE TO KEEP DANGEROUS GOODS



ISSUED UNDER AND SUBJECT TO THE PROVISIONS OF THE DANGEROUS GOODS ACT, 1975 AND REGULATION THEREUNDER 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 850 L FLAMMABLE LIQUIDS CABINET Class 3 4 150 L **UN 1133 ADHESIVES** 700 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L Class 3 FLAMMABLE LIQUIDS CABINET 5 100 L UN 1133 ADHESIVES 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L FLAMMABLE LIQUIDS CABINET Class 3 6 100 L **UN 1133 ADHESIVES** 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L FLAMMABLE LIQUIDS CABINET Class 3 7 100 L UN 1133 ADHESIVES 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 100 L FLAMMABLE LIQUIDS CABINET Class 3 8 50 L UN 1133 ADHESIVES 50 L UN 1993 FLAMMABLE LIQUID, , N.O.S. 250 L FLAMMABLE LIQUIDS CABINET Class 3 9 100 L UN 1133 ADHESIVES 150 L UN 1993 FLAMMABLE LIQUID, , N.O.S.





J. Robins & sons pty. ltd. C.N. 000 005 005

677 CANTERBURY ROAD, BELMORE NSW 2192, AUSTRALIA. PO BOX 6006 LAKEMBA BUSINESS CENTRE 2195.



paper of last

TELEPHONE: (02) 9789-1111 FACSIMILE: (02) 9718-2234

SERVICES

27 September 1996

WorkCover Authority Dangerous Goods Licensing Section (Attention: Penelope Withers) Senior Licensing Clerk, Dangerous Goods Locked Bag 10 Post Office Clarence Street SYDNEY NSW 2000

SUBJECT: ABANDONMENT OF UNDERGROUND STORAGE TANK.

Dear Ms Withers,

Please be advised of the following details:

- 1. Dangerous Goods Number = 35/018247
- 2. Address of the site = 677 Canterbury Road BELMORE 2192.

3. Company occupy the site = J. Robins & Sons Pty Ltd

- 4. Capacity of tanks abandoned =  $1 \ge 2,200$  litre underground storage tank
- 5. Method of locating tank = Refer sketch attached.

6. Method of abandonment = Underground tank top opened and filled with concrete slurry to Clause 9.8.13 in Australian Standards AS1940-1993 "The Storage and Handling of Flammable and Combustible Liquids"

7. Method for vent, fill dip, and bowser lines sealed = Removed and/or disconnected and plugged.

Contractor, who carried out work = Tank removal was carried by Pengrin Pty Ltd,
 16 Arkley Street Bankstown, 2200. Refer to attached letter.

9. Name and telephone number of a contact on site = Mr Harry Rosenbrock phone 97891111.

Yours faithfully J. ROBINS & SONS PTY LTD

H.D.ROSENBROCK PERSONNEL MANAGER



J.ROBINS PTY/LTD. 677 CANTERBURY RD. BELMORE N.S.W. 2192.

SUBJECT: UNDERGROUND FUEL STORAGE TANK AT. J. ROBINS PTY/LTD. BELMORE.

ABONDONED UNDERGROUND TANK.

TANK CAPACITY. 2200 lts.

METHOD OF APANDONMENT. SOLID FILL WITH CEMENT SLURRY.

VENT LINE. PLUGED LINE.

SUCTION LINE. REMOVED LINE.

FILL LINE. PLUGED LINE.

DIP PIPE. REMOVED PIPE.

WORK CARRIED OUT BY. PEGRIN PTY/LTD.

PUMP . REMOVED

TO LOCATE TANK AS/BELOW SKETCH.



ANDERSON ST

REGARDS.

p. gens

P.CAGGIANO. ( director)





16 ARKLEY STREET BANKSTOWN 2200 PHONE: 790 3573 FAX: 790 7158 MOBILE: 018 618 142

9-7-96.

		-	

	-		



plication is hereb	y made for—	*the transfer of th	endment of the licen ne licence er is not required)	FFF: S	eping of dangerous goods in 10.00 per Depot for new lic 10.00 for amendment or tra	ence.
me of Applicant		2		ONS A	4 8753 24/02/81	DISA
(see over) ading name or oc	cupier's			-		
name (if any)		00.2	21 2	E MOR	E SOUTH P	ostcode 2/92
ddress of the prer street number (	mises including (if any)	677	CANTERB	ORY RS	BELMORE P	ostcode 2772
ature of premises	(see over)		gentary		700 11.1	
elephone number	of applicant	STD Code	N	lumber	789-1111	
articulars of type	of depots and n	naximum quantiti	es of dangerous good	ls to be kept 2	t any one time.	
				]	Dangerous goods	C & C
Depot number	Type of ( (see ov		capacity			Office use only
1 4	orded par	kage store		selven	to & thinaets	6 020 2
2	acper pro-	J				
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
Has site plan bee	en approved?	Yes No		attach site plar		
Have premises p	previously been li	censed? Yes	If yes, state r	name of previo	us occupier.	
Name of compa	ny supplying fla	mmable liquid (if	any)	1/1	/	
			re of applicant	Math	Dat	e 25.11.82
For external ex	plosives magazin	e(s), please fill in	1			
FOR OFFICE	USE ONLY Reputer the pre-		CERTIFICATE OF	being an	Inspector under the Dange nents of the Dangerous Go e keeping of dangerous good	
Signature of In	spector	/ under	<u></u>		Date	
Signature of In			NIA		Date 25.11.82	



## **APPENDIX F**

NSW EPA Database Information

# List of NSW Contaminated Sites Notified to EPA as of 14 February 2014

#### Background

In response to 2008 amendments to the *Contaminated Land Management Act 1997* (CLM Act) clarifying the Section 60 duty to report contaminated sites, the Environment Protection Authority (EPA) has received 1,063 notifications (as 14 February 2014) from owners or occupiers of sites where they believe the site is contaminated.

A strategy to systematically assess, prioritise and respond to these notifications has been developed by the EPA. This strategy acknowledges the EPA's obligations to make information available to the public under *Government Information (Public Access) Act 2009*.

When a site is notified to the EPA, it may be accompanied by detailed site reports where the owner has been proactive in addressing the contamination and its source. However, often there is minimal information on the nature or extent of the contamination.

For some notifications, the information indicates the contamination is securely immobilised within the site, such as under a building or carpark, and is not currently causing any offsite consequences to the community or environment. Such sites would still need to be cleaned up, but this could be done in conjunction with any subsequent building or redevelopment of the land. These sites may not require intervention under the CLM Act, but could be dealt with through the planning and development consent process.

Where indications are that the nominated site is causing actual harm to the environment or an unacceptable offsite impact (i.e. it is a "significantly contaminated site"), the EPA would apply the regulatory provisions of the CLM Act to have the responsible polluter and/or landowner investigate and remediate the site.

As such, the sites notified to the EPA and presented in the following table are at various stages of the assessment and/or remediation process. Understanding the nature of the underlying contamination, its implications and implementing a remediation program where required, can take a considerable period of time. The tables provide an indication, in relation to each nominated site, as to the management status of that particular site. Further detailed information may be available from the EPA or the responsible landowner.

The following questions and answers may assist those interested in this issue:

#### Frequently asked questions

## What is the difference between the "List of NSW Contaminated Sites Notified to the EPA" and the "Contaminated Land: Record of Notices"?

A site will be on the <u>Contaminated Land: Record of Notices</u> only if the EPA has issued a regulatory notice in relation to the site under the *Contaminated Land Management Act 1997*.

The sites appearing on this "List of NSW contaminated sites notified to the EPA" indicate that the notifiers consider that the sites are contaminated and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation by the EPA. The EPA needs to review and, if necessary, obtain more information before it can make a determination as to whether the site warrants regulation.

#### Why my site appears on the list?

Your site appears on the list because of one or more of the following reasons:

- The site owner and/or the person partly or fully responsible for causing the contamination notified to the EPA about the contamination under Section 60 of the *Contaminated Land Management Act 1997*. In other words, the site owner or the "polluter" believes the site is contaminated.
- The EPA has been notified via other means and is satisfied that the site is or was contaminated.

#### Does the list contain all contaminated sites in NSW?

No. The list only contains contaminated sites that the EPA is aware of, with regard to its regulatory role under the CLM Act. An absence of a site from the list does not necessarily imply the site is not contaminated.

The EPA relies upon responsible parties to notify contaminated sites.

#### How are these notified contaminated sites managed by the EPA?

There are different ways that the EPA manages these notified contaminated sites. First, an initial assessment is carried out by the EPA. At the completion of the initial assessment, the EPA may take one or more than one of the following management approaches:

- The contamination warrants the EPA's direct regulatory intervention either under the *Contaminated Land Management Act 1997* or the *Protection of the Environment Operations Act 1997* (POEO Act), or both. Information about current or past regulatory action on this site can be found on EPA website.
- The contamination with respect to the current use or approved use of the site, as defined under the *Contaminated Land Management Act 1997,* is not significant enough that it warrants EPA regulation.
- The contamination does not require EPA regulation and can be managed by a planning approval process.
- The contamination is related to an operational Underground Petroleum Storage System, such as a service station or fuel depot. The contamination may be managed under the POEO Act and the Protection of the Environment Operation (Underground Petroleum Storage Systems) Regulation 2008.
- The contamination is being managed under a specifically tailored program operated by another agency (for example the Department of Industry and Investment's *Derelict Mines Program*).

#### I am the owner of a site that appears on the list. What should I do?

First of all, you should ensure the current use of the site is compatible with the site contamination. Secondly, if the site is the subject of EPA regulation, make sure you comply with the regulatory requirements, and you have considered your obligations to notify other parties who may be affected.

If you have any concerns, contact us and we may be able to offer you general advice, or direct you to accredited professionals who can assist with specific issues.

#### I am a prospective buyer of a site that appears on the list. What should I do?

You should seek advice from the vendor to put the contamination issue into perspective. You may need to seek independent expert advice.

The information provided in the list, particularly the EPA Site Management Class, is meant to be indicative only, and a starting point for your own assessment. Site contamination as a legacy of past site uses is not uncommon, particularly in an urbanised environment. If the contamination on a site is properly remediated or managed, it may not materially impact upon the intended future use of the site. However, each site needs to be considered in context.

#### List of NSW Contaminated Sites Notified to the EPA

#### Disclaimer

The EPA has taken all reasonable care to ensure that the information in the list of contaminated sites notified to the EPA (the list) is complete and correct. The EPA does not, however, warrant or represent that the list is free from errors or omissions or that it is exhaustive.

The EPA may, without notice, change any or all of the information in the list at any time.

You should obtain independent advice before you make any decision based on the information in the list.

The list is made available on the understanding that the EPA, its servants and agents, to the extent permitted by law, accept no responsibility for any damage, cost, loss or expense incurred by you as a result of:

- 1. any information in the list; or
- 2. any error, omission or misrepresentation in the list; or
- 3. any malfunction or failure to function of the list;
- 4. without limiting (2) or (3) above, any delay, failure or error in recording, displaying or updating information.

THE EPA Site Management Class	Explanation
A	The contamination of this site is being assessed by the EPA. Sites which have yet to be determined as significant enough to warrant regulation may result in no further regulation under the <i>Contaminated Land Management Act 1997</i> .
В	The EPA is awaiting further information to progress its initial assessment of this site.
С	The contamination of this site is or was regulated under the <i>Contaminated Land Management Act 1997</i> . Information about current or past regulatory action on this site can be found on the EPA website ( <u>www.epa.nsw.gov.au</u> ) - Environmental Issues - Contaminated Land - Record of EPA notices.
D	The contamination of this site is or was regulated under the <i>Protection of the Environment Operations Act 1997</i> . Information about current or past regulatory action on this site can be found on the EPA website ( <u>www.epa.nsw.gov.au</u> ) - Environmental Issues - Environment Protection Licences - POEO public register.
E	This is a premises with an operational Underground Petroleum Storage System, such as a service station or fuel depot. The contamination of this site is managed under the <i>Protection of the Environment Operations</i> <i>Act 1997</i> and the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008.
F	The contamination of this site is managed by a planning approval process. The consent authority is either the local council or a government agency, such as the Department of Planning.
G	Based on the information made available to the EPA to date, the contamination of this site is considered by the EPA to be not significant enough to warrant regulatory intervention under the <i>Contaminated Land Management Act 1997</i>
Н	Initial assessment completed. The contamination of this site is to be regulated by the EPA

			Activity that caused the	s60 Form	EPA Initial	EFA Management
Suburb/City	Site Description	Site Address	contamination	Received	Assessment	Class
Bathurst	Former Police Station	Corner of William and Durham Streets	Other Petroleum	No	Completed	C G
Bathurst	Former Mobil Depot	Lower Russell Street	Other Petroleum	yes	Completed	IJ
Bathurst	Crago Mill site	Piper Street	Other Industry	Yes	Completed	Ð
Bathurst West	Shell Coles Express Service Station	298 Stewart Street (Cnr Stewart and Rocket Street)	Service Station	Yes	Completed	9
Baulkham Hills	Caltex Service Station	117 Seven Hills Rd	Service Station	Yes	In progress	В
Baulkham Hills	Caltex Service Station	130-132 Seven Hills Rd	Service Station	Yes	In Progress	A
Baulkham Hills	Shell Coles Express Service Station	363 Windsor Road	Service Station	Yes	Completed	E G
Beacon Hill	Caltex Service Station	176 Warringah Rd	Service Station	Yes	In progress	В
Bega	Former BP Service Station	100 - 102 Gipps Street	Service Station	Yes	In progress	A
Bega	Bega Gasworks	27 Upper Street	Gasworks	No	In Progress	В
Bega	Caltex Service Station	280 Carp Street	Service Station	Yes	In progress	В
Bega	Caltex Service Station	36-40 Lagoon St	Service Station	Yes	In progress	В
Belmont	Belmont Bus Depot	2 Floraville Road	Other Petroleum	yes	In Progress	В
Belmont	Former Ampol Service Station	467-469 Pacific Highway	Service Station	No	Completed	9
Belmont	Shell Coles Express Service Station	502 Pacific Highway	Service Station	Yes	In Progress	В
Belmont North	Woolworths Petrol	397 Pacific Highway	Service Station	Yes	In progress	A
Belmont North	Caltex Service Station	406 Pacific Hwy	Service Station	Yes	In progress	В
Belmore	SRA Land	348 Burwood Road	Unclassified	Yes	Completed	Ð
Belmore	7 Eleven Service Station	792-794 Canterbury Road	Service Station	Yes	Completed	ß
Belrose	Caltex Service Station	157 Forest Way	Service Station	Yes	In progress	В
Belrose	Glenrose Shopping Centre	56-58 Glen Street	Unclassified	Yes	Completed	С
Belrose	Woolworths Petrol	60 Glen Street	Service Station	Yes	In progress	A
Beresfield	BP Beresfield Truckstop	Cnr Kinta and John Renshaw Drives	Service Station	Yes	In progress	A
Beresfiled	Former Koppers Timber Treatment Site	53 Weakleys Drive	Other Industry	Yes	In progress	A



## **APPENDIX G**

Data Quality Objectives



## INTRODUCTION

The Data Quality Objectives (DQOs) process was used to define the type, quantity and quality of the data needed to support decisions relating to the environmental condition of a site (reference G1). The process consists of seven steps, with the output from each step influencing the choices that will be made later in the process.

According to USEPA (reference G2), DQOs are qualitative and quantitative statements, derived from the first six steps of the process, that:

- Clarify the study objective;
- Define the most appropriate type of data to collect;
- Determine the most appropriate conditions from which to collect the data; and
- Specify tolerable limits on decision errors which will be used as the basis for establishing the quantity and quality of data needed to support the decision.

The DQOs are then used to develop a scientific and resource-effective data collection design.

#### STEP 1 - STATE THE PROBLEM

The problem is the potential for the site to be impacted by contamination caused by past activities undertaken on or adjacent to the site, at levels in excess of those permissible for the proposed residential land-use with minimal access to soil and which could impact upon anticipated receiving environments and the intended purchase of the property.

## STEP 2 - IDENTIFY THE DECISION STATEMENT

Identify contamination at the site which would pose an unacceptable risk as defined by relevant guidelines endorsed by the NSW Office of Environment and Heritage (reference G3, G4, G5) for the proposed industrial land-use for the site and/or that would impact upon anticipated receiving environments.



#### STEP 3 - IDENTIFY INPUTS TO THE DECISION

The following information inputs are required to resolve the decision statement:

- Collection of environmental soil and groundwater samples using appropriate methods,
- ♦ Analysis of selected samples for the contaminants of concern,
- Comparison of the results with relevant soil Site Assessment Criteria (SAC) and Groundwater Investigation Levels (GILs) as defined in the main body of the report, and
- Accurate measurements of sample locations to allow for accurate mapping and contouring of contamination (if identified).

#### STEP 4 - DEFINE THE BOUNDARIES OF THE STUDY

The site is located at 677 – 687 Canterbury Road, Belmore and encompasses the following legal allotments:

- ◊ Lots 1 & 2 in DP 533919
- ♦ Lots A & B in DP952115, and
- ♦ Lot 91 in DP3862.

The lateral extent of the study is the boundaries of the site (as depicted on **Figure 2**) and the site survey in **Appendix A** of the main report. The horizontal extent of the study is approximately 2m below ground surface (bgs), 0.5m into natural soils or drilling / excavation method refusal.

#### STEP 5 - DEVELOP A DECISION RULE

The purpose of this step is to define the parameter of interest, specify the action level, and integrate previous DQO outputs into a single "if...then..." statement that describes a logical basis for choosing among alternative actions.



The parameters of interest (or contaminants of concern) are a broad group of common contaminant compounds known to occur within the Sydney area.

The action level or Site Assessment Criteria (SAC) will be used to decide if the parameter represents an unacceptable risk for industrial land-use and/or the receiving environment. If the measured concentration of a parameter or compound exceeds the action levels (SAC) in soils, then this is deemed to present an unacceptable risk if the site is developed for residential land-use or to environmental receptors.

If the concentrations of a parameter or compound, whichever is representative for of the site, are above the nominated action levels, then further sampling may be proposed to determine the extent of contamination.

## STEP 6 - SPECIFY ACCEPTABLE LIMITS ON DECISION ERRORS

There are two types of errors:

- 1) Deciding that the site is acceptable for industrial land-use and that there is a low risk to receiving environments when it actually is not. The consequence of this error may be unacceptable health risk for current and future users of the sites.
- 2) Deciding that the site is unacceptable for industrial land-use and that there is a risk to receiving environments when it is acceptable. The consequence of this error is that the client will pay for further investigation / remediation that are not necessary.

The more severe consequences are with decision error (1) since the risk of jeopardising human health outweighs the consequences of paying more for remediation. It will not be possible to conduct statistical hypothesis tests as the proposed sampling programme consists of the collection of one round of samples only.



### STEP 7 - OPTIMISING THE DESIGN FOR OBTAINING DATA

The purpose of this step is to identify a resource-effective data collection design for generating data that are expected to satisfy the DQOs.

The resource effective data collection design that is expected to satisfy the DQOs is described in detail in Section 7 of the report. To ensure the design satisfies the DQOs a comprehensive Quality Assurance and Quality Control Plan will be implemented.

#### References

- G1. NSW DEC (2006) *Contaminated Sites: Guidelines for NSW Site Auditor Scheme, 2nd Edition.*
- G2. USEPA, 2000: *Guidance for Data Quality Objectives Process*. EPA QA/G-4.
- G3. NEPC, 2013: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater.
- G4. Friebel & Nadebaum (2011): *Technical Report No. 10 Health screening levels for petroleum hydrocarbons in soil and groundwater Part 1: Technical development document*. CRC for Contamination Assessment and Remediation of the Environment.
- G5. ANZECC/ARMCANZ, 2000: Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, 2000: *Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy*. October 2000.



#### **APPENDIX H**

Borehole Logs

#### **Borehole Log Report** Geo Environmental Engineering BH1 Hole ID. geo-environmer 82 Bridge Street Hole Depth: 1.20 m Lane Cove NSW 2066 M. 0431 480 980 Sheet: 1 of 1 E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL42.5m (approx) Drill Method: Push Tube Date Completed: 16/12/2013 Easting: Equipment: Geoprobe 7822DT Northing: Samp. / Tests USCS Symbol Material Type Consistency / Density Graphic Log Water Level Ê Material Description Observations / Comments Moisture Method Ē Depth ( ID No. RL ( ASPHALT. dry to moist medium Ē FILL- Sandy GRAVEL, dark brown, with some SM161213-01 dense clay. 0.1-0.4 Silty CLAY- orange / brown, grey, medium to high plasticty. firm to stiff 0.5 moist 42 **Fube** Push T Natural SM161213-02/03 СН 0.4-1.1 1.0 Extremely Weathered SHALE- grey and orange / brown, estimated extremely low to very dry low strength. End of Hole at 1.20m 1.5 41 Refusal. 2.0 2.5 40 3.0 .GPJ GEE CH.GDT 5/3/14 10:22:46 AM 3.5 39 4. Additional Comments Logged By: Stephen McCormack Date: 16/12/2013 Checked By: Stephen McCormack Date: 5/03/2014

GEE BH LOG BELMORE E13017BEL

82 Brid Lane C M. 043	ge St ove N	reet NSW		-	Beering Benginser				e ID. Depth: et:		8.	BH: .00 r of
Project Locatio					ge 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject Ni lient:		8017BEL y Alliance Property			
Drilling Drill Me Equipm	thod:			Pu	oca Environmental Pty Ltd sh Tube / Solid Stem Auger oprobe 7822DT	Date Started: Date Complet		6/12/2013 6/12/2013	Ground Level: I Easting: · Northing: ·	RL43.6	<b>m</b> (	appr
Water Level Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Commer	nts	Well Details	
				Fill	ASPHALT. FILL- Gravelly Clayey SAND, dark brown and brown, medium to coarse grained sand, fine to coarse gravel.	loose	moist	SM161213-04 0.1-0.25				
			СН		FILL- Gravelly SAND with Silt (Ash), black and dark grey. Silty CLAY- red brown and orange brown, medium to high plasticty. Becoming pale grey with depth.	loose firm to stiff	moist	SM161213-05 0.7-0.8 / SM161213-06 0.9-1.0 / SM161213-07 1.5-1.7			<b>a</b>	
- 2.5	 			Natural	Extremely Weathered SHALE / SILTSTONE- pale grey / brown, estimated extremely low to very low strength.		dry	SM161213-08 2.5-3.0		2.20		
	40 							SM161213.00		3.30 3.80		
Addition	- - , nal Co		ents	5				SM161213-09 4.0-4.3				

										I	Monitoring We	ell Log	Rep	ort
;	82 E Lan	Bridg e Co	je S ove I	nmen treet NSW 0 980	206	-	geo-environn			Н	ole ID. ble Depth: neet:		8.0	6 <b>H2</b> 00 m of 2
	Proj	ject	Nam	ne:		Sta	age 2 Detailed Site Investigation	P	roject I	Number: E	13017BEL			
	Loc	atior	ו / S	ite:		67	7-687 Canterbury Road, Sydney NSW	C	lient:	C	City Alliance Proper	ty		
	Drill	ing ( Mei iipm	thod	ipany I:	:	Pu	oca Environmental Pty Ltd Ish Tube / Solid Stem Auger coprobe 7822DT	Date Started: Date Comple		16/12/2013 16/12/2013	Ground Level: Easting: Northing:	RL43.6	5m (a) - -	oprox)
	svel	Ê		Log	ymbol	Type	Material Description	/ hou		Samp. / Tests	Observations / Cor	amonts	ails	Well Construction
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	ID No.		iments	Well Details	Well Cor
2:47 AM Solid Stem Auger		- - - - - - - - - - - - - - - - - - -				Natural	Extremely Weathered SHALE / SILTSTONE- pale grey / brown, estimated extremely low to very low strength.(continued)		dry			7.60		-in Gravel Pack
GEE CH.GDT 5/3/14 10:2		- - - 8.5 -	- - - 35				Hole Terminated at 8.00m							Cave-in
EL.GPJ		9.0	F											
GEE BH LOG BELMORE E 13017BEL.GPJ GEE CH.GDT 5/3/14 10:22:47 AM	Add			Comm										
GEE		Log	ggeo	d By:	:	Ste	phen McCormack Date: 16/12/2013	Chec	ked By:	Stephen	McCormack Date:	5/03/201	14	

Geo Environmental I 82 Bridge Street Lane Cove NSW 200 M. 0431 480 980			Hole Hole Shee	Depth:	7.0	8 <b>H3</b> 00 m of 2
Project Name: Location / Site:	Stage 2 Detailed Site Investigation 677-687 Canterbury Road, Sydney NSW	Project Client:		017BEL Alliance Property		
Drilling Company: Drill Method: Equipment:	Epoca Environmental Pty Ltd Push Tube / Solid Stem Auger Geoprobe 7822DT	Date Started: Date Completed:	16/12/2013 16/12/2013		L44.8m (a 	pprox
Method Water Level Depth (m) RL (m) Graphic Log USCS Symbol	Material Description	Consistency / Density Moisture	Samp. / Tests ID No.	Observations / Comments	well Details	Well Construction
Bold Standard Standar	CONCRETE.         FILL- Silty Gravelly CLAY, dark brown, low to medium plasticity, fine to coarse gravel, some sand.         Silty CLAY- dark brown, medium to high plasticty.         Becoming red brown / orange brown from 0.6mbgl.         Becoming pale grey and red brown from 1.0mbgl.         Completely to Extremely Weathered SHALE-grey and red brown, estimated extremely low to very low strength.         Becoming estimated very low to low strength Class IV rock from 2.8mbgl, some ironstone bands.         S	firm to stiff mois	SM161213-11 0.4-0.55 SM161213-12 1.2-1.4		0.90 2.60	
Logged By:	Stephen McCormack Date: 16/12/2013	Checked By	: Stephen Mo	:Cormack Date: 5/0	3/2014	

									Ν	Ionitoring We	ll Log	Rep	ort		
Geo Environmental Engineering 82 Bridge Street Lane Cove NSW 2066 M. 0431 480 980						neering <u> <u> <u> geo-environn</u></u> <u> geo-environn</u> <u> geo-environn</u> <u> sec</u></u>			Hol	Hole ID. Hole Depth: Sheet:			BH3 7.00 m 2 of 2		
	ject					age 2 Detailed Site Investigation	-			3017BEL					
Dril Dril	lling ( II Me	Corr thod	npany	:	Ep Pu	7-687 Canterbury Road, Sydney NSW oca Environmental Pty Ltd sh Tube / Solid Stem Auger oprobe 7822DT	Date Started: Date Comple		6/12/2013 6/12/2013	ty Alliance Proper Ground Level: Easting: Northing:	ry RL44.8 	<b>m</b> (ap - -	oprox)		
Method Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	- Observations / Com	ments	Well Details	Well Construction		
1.GDT 5/3/14 10:22:49 AM Solid Stem Auger	- 5.0 - 5.0 - 5.5 - 6.0 - 6.5 - 6.5 - 6.5 - 7.0 - 7.0				Natural	Completely to Extremely Weathered SHALE- grey and red brown, estimated extremely low to very low strength.(continued)		dry	SM161213-15 5.0-5.5		8.60				
GEE BHLOG BELMORE E13017BEL.GPJ GEE CH.GDT 5/3/14 10:22:49 AM		nal C	Comm												
GEE	Lo	ggeo	d By:	;	Step	ohen McCormack Date: 16/12/2013	Chec	ked By:	Stephen N	IcCormack Date:	5/03/201	4			

Geo Environmental Engineering 82 Bridge Street Lane Cove NSW 2066 M. 0431 480 980										Hol	Monitoring Well Hole ID. Hole Depth: Sheet:		II Log Report BH4 6.50 m 1 of 2		
							age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW				3017BEL y Alliance Propert				
[	Drill Drill		Com thoc	npany	/:	Ep Pu	oca Environmental Pty Ltd	Date Started: Date Complet	1	6/12/2013 6/12/2013	Ground Level: Easting: Northing:	, RL44.5 	5 <b>m</b> (a - -	ipprox)	
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Comr	nents	Well Details	Well Construction	
СС		-	-			Fill	CONCRETE. Silty Gravelly CLAY- dark brown, low to medium plasticity, some roots.		moist	SM161213-22 0.15-0.3				Gattic 📕	
Push Tube		     	44     43 		СН		Silty CLAY- grey and orange brown, medium to high plasticty. Becoming predominantly grey with orange brown bands, ironstone gravel.	firm to stiff becoming stiff to very stiff	moist	SM161213-23 0.4-0.6 SM161213-24 1.0-1.2		1.50			
Solid Stem Auger		- - - - - - - - - - - - - - - - - - -	- - 42 - -			Natural	Extremely Weathered SHALE / SILTSTONE- grey and brown, estimated extremely low to very low strength. Estimated very low to low strength from 3.2mbgl.		dry	SM161213-25 2.0-2.5		2.50 3.00		Bentonite	
		3.5 4.0 4.0 	- - - - - - 40							SM161213-26 4.0-4.5				Screen	
,	Add	lition	nal C	Comm	nent	s									
		Log	ggeo	d By:		Ste	ohen McCormack Date: 16/12/2013	Check	ed By:	Stephen M	cCormack Date:	5/03/201	14		
				M	onitoring Well	Log Repor									
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------	-------------------------------	----------------------	---------------------------	----------------------------------------	--------------------------------									
Geo Environmental Engineerin 82 Bridge Street Lane Cove NSW 2066 M. 0431 480 980	geo-environm				<b>e ID.</b> Depth: et:	BH4 6.50 n 2 of 2									
	Detailed Site Investigation Canterbury Road, Sydney NSW		roject Num lient:		8017BEL y Alliance Property										
Drill Method: Push Tu	Environmental Pty Ltd ube / Solid Stem Auger be 7822DT	Date Started: Date Complet		12/2013 12/2013	Ground Level: Easting: Northing:	RL44.5m (approx									
Method Water Level Depth (m) RL (m) Graphic Log USCS Symbol Material Type	Material Description	Consistency / Density	Moisture	Samp. /Tests ID No.	Observations / Commo	Well Details Well Construction									
Jagon Participante de la compansion de l	emely Weathered SHALE / SILTSTONE- and brown, estimated extremely low to very strength.(continued)		dry			averinGravel PackGravel Pack									
We official contract of the second	Terminated at 6.50m														
Logged By: Stephen	McCormack Date: 16/12/2013	Check	ked By:	Stephen Mo	cCormack Date:	5/03/2014									

**Borehole Log Report** Geo Environmental Engineering Hole ID. BH5 geo-environmer 82 Bridge Street Hole Depth: 3.50 m Lane Cove NSW 2066 M. 0431 480 980 Sheet: 1 of 1 E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL44.8m (approx) Drill Method: Push Tube / Solid Stem Auger Date Completed: 16/12/2013 Easting: Northing: Equipment: Geoprobe 7822DT Samp. / Tests USCS Symbol Material Type Consistency / Density Level Graphic Log Ê Material Description Observations / Comments Moisture Method Water L Ê Depth ( ID No. RL ( CONCRETE сс SM161213-33 FILL- SAND, yellow / brown, fine to coarse moist firm 0.14-0.2 grained. slightly SM161213-34 FILL- Silty CLAY, dark brown, some gravel. moist 0.2-0.6 0.5 SM161213-35 0.6-0.8 Silty CLAY- red brown and orange brown, firm to stiff moist medium to high plasticty. Tube Push 7 Becoming predominantly grey and orange brown very stiff SM161213-36 1.0-1.2 СН from 1.1mbgl. 1. Extremely Weathered SHALE- grey brown, dry 43 SM161213-37 1.8-2.0 estimated very low strength. 2.0 Natural Solid Stem Auger 2. 42 3. SM161213-38 3.3-3.5 3. Hole Terminated at 3.50m 41 4. Additional Comments

GEE BH LOG BELMORE E13017BEL.GPJ GEE CH.GDT 5/3/14 10:22:52 AM

**Borehole Log Report** Geo Environmental Engineering Hole ID. BH6 geo-environmer 82 Bridge Street Hole Depth: 4.00 m Lane Cove NSW 2066 M. 0431 480 980 1 of 1 Sheet: E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL44.7m (approx) Drill Method: Push Tube / Solid Stem Auger Date Completed: 16/12/2013 Easting: Northing: Equipment: Geoprobe 7822DT Samp. / Tests USCS Symbol Material Type Consistency / Density Level Graphic Log Ê Material Description Observations / Comments Moisture Method Water L Ê Depth ( ID No. RL ( CONCRETE сс FILL- SAND, yellow brown, fine to coarse loose to moist Likely tankpit sands. SM161213-39 grained, some fine to coarse gravel. very loose 0.2-0.35 0.5 44 SM161213-40 0.8-1.0 Push Tube Ē SM161213-41 1.3-1.5 1. 43 21 Extremely Weathered SHALE- brown / grey, estimated extremely low to very low strength. SM161213-42 2.3-2.5 dry 2. 42 Solid Stem Auger 3. Natural 5/3/14 10:22:53 AM 3. SM161213-43 3.5-4.0 GPJ GEE CH.GDT Hole Terminated at 4.00m GEE BH LOG BELMORE E13017BEL Additional Comments No obvious evidence of contamination, no adverse odour and no potential asbestos containing materiel (such as fibro) observed during drilling. Logged By: Stephen McCormack Date: 16/12/2013 Checked By: Stephen McCormack Date: 5/03/2014

Geo Environmental Engineering Hole ID. BH7 geo-environmer 82 Bridge Street Hole Depth: 4.00 m Lane Cove NSW 2066 M. 0431 480 980 1 of 1 Sheet: E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL44.7m (approx) Drill Method: Push Tube / Solid Stem Auger Date Completed: 16/12/2013 Easting: Equipment: Geoprobe 7822DT Northing: Samp. / Tests USCS Symbol Material Type Consistency / Density Level Graphic Log Ê Material Description Observations / Comments Moisture Method Water L Ê Depth ( ID No. RL ( SM161213-44 0.0-0.2 TOPSOIL / FILL- Clayey SILT, dark brown, low firm dry to plasticity, some roots. moist FILL- SAND, yellow brown, fine to coarse loose to moist SM161213-45 Likely tankpit sands. grained, trace medium to coarse gravel. very loose 0.3-0.5 0.5 44 SM161213-46 1.1-1.3 Push Tube E 1. 43 21 2. SM161213-47/48 2.5-2.8 42 Extremely Weathered SHALE- brown / grey, estimated extremely low to very low strength. dry SM161213-49 3.0-3.5 Solid Stem Auger Natural 3. GEE CH.GDT Hole Terminated at 4.00m Additional Comments GEE BH LOG BELMORE E1 No obvious evidence of contamination, no adverse odour and no potential asbestos containing materiel (such as fibro) observed during drilling. Logged By: Stephen McCormack Date: 16/12/2013 Checked By: Stephen McCormack Date: 5/03/2014

5/3/14 10:22:53 AM

GPJ. 17BEL. 301 **Borehole Log Report** 

Geo Environmental Engineering BH8 Hole ID. geo-environmer 82 Bridge Street Hole Depth: 3.50 m Lane Cove NSW 2066 M. 0431 480 980 Sheet: 1 of 1 E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL44.8m (approx) Drill Method: Push Tube / Solid Stem Auger Date Completed: 16/12/2013 Easting: Equipment: Geoprobe 7822DT Northing: Samp. / Tests USCS Symbol Material Type Consistency / Density Level Graphic Log Ê Material Description Observations / Comments Moisture Method Ê Water I Depth ID No. RL ( СС CONCRETE. FILL- SAND, brown, fine to coarse grained. very loose moist Likely tankpit sands. SM161213-16/17 0.2-0.4 to loose 0.5 Tube Push T FILL- Gravelly SAND, brown, fine to coarse very loose moist SM161213-18 grained, some concrete fragments. to loose 1.1-1.3 Ē 1. SM161213-19 1.5-1.6 FILL- CONCRETE. Likely tank anchor. 43 2. FILL- SAND, yellow brown, fine to coarse very loose moist Likely tankpit sands. Solid Stem Auger SM161213-20 2.3-2.55 to loose grained. 2. 42 Extremely to Highly Weathered SHALE- dark dry SM161213-21 2.8-3.0 brown and red brown, estimated very low strength. Natural 3. Hole Terminated at 3.50m 41 Additional Comments No obvious evidence of contamination, no adverse odour and no potential asbestos containing materiel (such as fibro) observed during drilling. Logged By: Stephen McCormack Date: 16/12/2013 Checked By: Stephen McCormack Date: 5/03/2014

5/3/14 10:22:54 AM

.GPJ GEE CH.GDT

3017BEL.

**BELMORE E1** 

GEE BH LOG

**Borehole Log Report** 

Borehole Log Report
Hole ID. BH9

Geo Environmental Engineering BH9 geo-environmer 82 Bridge Street Hole Depth: 4.00 m Lane Cove NSW 2066 M. 0431 480 980 1 of 1 Sheet: E13017BEL Project Name: Stage 2 Detailed Site Investigation Project Number: Location / Site: 677-687 Canterbury Road, Sydney NSW Client: **City Alliance Property** Drilling Company: Epoca Environmental Pty Ltd Date Started: 16/12/2013 Ground Level: RL44.7m (approx) Drill Method: Push Tube / Solid Stem Auger Date Completed: 16/12/2013 Easting: Equipment: Geoprobe 7822DT Northing: Samp. / Tests USCS Symbol Material Type Consistency / Density Level Graphic Log Ê Material Description Observations / Comments Moisture Method Water L Ê Depth ( ID No. RL ( CONCRETE сс SM161213-27 FILL- SAND, yellow / brown, fine to coarse moist Ē firm 0.15-0.2 SM161213-28 grained. moist FILL- Silty Gravelly CLAY, dark brown, low to 0.2-0.35 0.5 medium plasticity, fine to coarse gravel, some stiff moist SM161213-29 Tube ash 0.5-0.7 44 Silty CLAY- red brown and orange brown, . Push medium to high plasticty. Becoming grey and orange brown from 0.8m, some shale structure. СН SM161213-30 1.1-1.2 Extremely Weathered SHALE- grey brown, dry estimated extremely low to very low strength. 1. 43 2.0 Natural SM161213-31 2.0-2.5 Solid Stem Auger 2. 42 3. 3. SM161213-32 3.5-4.0 Hole Terminated at 4.00m Additional Comments No obvious evidence of contamination, no adverse odour and no potential asbestos containing materiel (such as fibro) observed during drilling. Logged By: Stephen McCormack Date: 16/12/2013 Checked By: Stephen McCormack Date: 5/03/2014

5/3/14 10:22:55 AM

GEE CH.GDT

3017BEL.GPJ

GEE BH LOG BELMORE E1

8 1	82 B Lane	Bridg e Co	ge S ove	nmer Street NSW 0 980	206	-	ineering <u> <u> <u> geo-environn</u></u> <u> geo-environn</u> <u> geo-environnn </u> <u> </u></u>			Hole	Depth:		BH 6.5	
F	Proje	ect	Nan	ne:			age 2 Detailed Site Investigation	P	roject N		017BEL			
l	Loca	atior	n / S	Site:		67	7-687 Canterbury Road, Sydney NSW	C	lient:	City	Alliance Property	1		
[	Drilli Drill Equi	Me	thoo		y:	Ρι	ooca Environmental Pty Ltd Ish Tube / Solid Stem Auger coprobe 7822DT	Date Started: Date Comple		6/12/2013 6/12/2013	Ground Level: Easting: Northing:	RL42.0	)m (ap - -	)prox
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Comm	ents	Well Details	Well Construction
сс		_	-	A S A	4		CONCRETE.							
		-	-	$\boxtimes$		E	FILL- SAND, yellow brown, fine to coarse grained.		moist	SM161213-50 0.2-0.3 SM161213-51			4 9 4 4	Gattic
ŋ		0.5	-	Ř			FILL- Silty CLAY, dark brown, low plasticity, with fine to medium grained sand.	firmstiff	very moist	SM161213-51 0.3-0.5 SM161213-52			4 4 4 4 4 4	
Push Tube	-	- - 	- - 41 -		сн		Silty CLAY- red brown and orange brown, medium to high plasticty.		moist	0.5-0.7			579 579 579 579 579 579 579 579 579 579	Grout –
	-	- - 1.5 - - - - 2.0	- - -				Extremely Weathered SHALE- grey / brown, frequent clay bands, estimated extremely low to very low strength.	5	dry	SM161213-53 1.3-1.5		1.50		
Auger		- - - 2.5 -				Natural				SM161213-54		2.50		Bentonite-
Solid Stem Auger	IN 3.37m BTOC 6/01/2014	- 3.0 - - - - 3.5	- 39  - 							2.5-3.0		3.00		Screen
		- - - 4.0 - -	- - - - - - - -											
_		4.5		Comn	l nent	s								
							contamination, no adverse odour and no pote	ential asbestos	containi	ng materiel (such	h as fibro) observed	during d	rilling.	
		1.00	gge	d By:		Ste	phen McCormack Date: 16/12/2013	Chec	ked By:	Stephen Mc	Cormack Date:	5/03/201	14	

										ſ	Monitoring Well Lo	g Rep	ort
	82 E Lan	Brido e Co	ge S ove	nmen treet NSW 0 980	206	-	neering Generation Generation Stream			Ho	<b>ble ID.</b> le Depth: leet:		110 0 m of 2
	-	ject atioi					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject Nu Client:		13017BEL ity Alliance Property		
	Drill	ing Me iipm	thoc		/:	Pu	oca Environmental Pty Ltd sh Tube / Solid Stem Auger coprobe 7822DT	Date Started: Date Comple		6/12/2013 6/12/2013	Ground Level: RL4 Easting: Northing:	2.0m (ap 	prox)
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Comments	Well Details	Well Construction
		- - 5.0 -	- - <u>3</u> 7 -				Extremely Weathered SHALE- grey / brown, frequent clay bands, estimated extremely low to very low strength.(continued)		dry	SM161213-55 4.5-5.0			Gravel Pack
Solid Stem Auger		-	- - - - - - - - - -			Natural	Becoming dark grey from 6.0mgl, estimated low to medium strength.	,		SM161213-56 5.5-6.0		6.00	ave-in Grav
		- 7.5 - 7.5 	- - - - - - - - - - - - - - - - - - -				Hole Terminated at 6.50m						Cav
<u> </u>		litior	nal C ous		ence	of	contamination, no adverse odour and no poter						
		Lo	ggeo	d By:		Ste	phen McCormack Date: 16/12/2013	Chec	ked By:	Stephen	McCormack Date: 5/03/	2014	

										Borehol	e Log Report
Geo Env 82 Bridg Lane Co M. 0431	ge Sti ove N	reet ISW		-		nme			_	l <b>e ID.</b> e Depth: et:	BH11 1.00 m 1 of 1
Project	Name	e:		Sta	age 2 Detailed Site Investigation			Project Numbe	er: <b>E1</b>	3017BEL	
Locatior	n / Sit	te:		677	7-687 Canterbury Road, Sydney N	SW		Client:	Cit	y Alliance Property	/
Drilling ( Drill Met Equipme	thod:	-			E nual nd Auger		te Starteo te Compl		2/2013 2/2013	Ground Level: Easting: Northing:	RL43.1m (approx)
e		og	mbol	ype		icy /		Samp / Test	). S		
Method Water Level Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	ID No.	DCP blows/100mm	Observations	/ Comments
	<u>4</u> 3 - -			Fill	<b>TOPSOIL / FILL</b> - Silty Gravelly CLAY, dark brown, fine to coarse gravel.	stiff	moist	SM171213-81 0.0-0.15	5 10 15		
- 0.5 - 0.5 - Haud Auger 			СН	Natural	Silty CLAY- red brown and brown, medium to high plasticty, with fine to coarse ironstone gravel.	stiff	moist	SM171213-82 0.5-1.0			
	- - - - - - - - - - - - - - - - - - -				Hole Terminated at 1.00m				+20 Ref. 1.6m	Likely depth to Shale	Bedrock (1.6m).
Addition No obvie					contamination, no adverse odour and n	io potential	l asbesto	s containing m	ateriel (su	ch as fibro) observed	during drilling.
H Log Log	gged	By:	ę	Step	ohen McCormack Date: 17/12/20	13	Che	cked By: S	tephen M	cCormack Date:	5/03/2014

									Borehol	e Log R	eport
82 Brid Lane C	ge S ove I	e Street GENGINEERING Ve NSW 2066 480 980						Hole Hole Shee	Depth:		BH12 1.50 m 1 of 1
Project Locatio					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		Project Ni Client:		017BEL Alliance Propert	y	
Drilling Drill Me Equipm	ethod	l:	<i>'</i> :	Pu	ooca Environmental Pty Ltd Ish Tube eoprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	Ground Level: Easting: Northing:	RL43.3m 	(approx
Method Water Level Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations	/ Comments	
- 22	- - 43	$\propto$		Fill	<b>ASPHALT</b> . <b>ROADBASE</b> - Sandy GRAVEL, grey / brown. <b>CONCRETE</b> - not reinforced.	/	dry moist	SM171213-60 0.1-0.15 SM171213-61			
997 - - - - - - - - - - - - -	-		СН	Natural	FILL- Silty Gravelly CLAY, dark grey, low plasticity. Silty CLAY- red brown and brown, medium plasticity.	firm	moist	0.3-0.4 SM171213-62 0.6-0.8			
					Extremely Weathered SHALE- grey brown, estimated extremely low to very low strength. Hole Terminated at 1.50m		dry	SM171213-63			
Addition	- - 39 - 5				contamination, no adverse odour and no pot	ential asbestos	containin	ng materiel (such	h as fibro) observed	during drilli	ng.
Lo	ggeo	d By:	;	Ste	phen McCormack Date: 17/12/2013	Chec	ked By:	Stephen Mc	Cormack Date:	5/03/2014	

												Borehole Log R	leport
;	82 E Lan	Bridg e Co	ge S ove I	nmen treet NSW 0 980	206	-	geo-enviro	ppppe				Depth:	BH13 1.20 m 1 of 1
	Proj	ject	Nam	ne:		St	age 2 Detailed Site Investigation			Project Numbe	er: <b>E1</b> :	3017BEL	
	Loc	atior	n/S	ite:		67	7-687 Canterbury Road, Sydney N	ISW		Client:	Cit	y Alliance Property	
	Drill	-	thod	ipany I:	<i>!</i> :		EE anual and Auger		e Starteo e Compl			Ground Level: RL44.8m Easting: Northing:	(approx)
	-evel	(L)		c Log	USCS Symbol	al Type	Material Description	tency /	ē	Samp / Test	s	Observations / Comments	
Method	Water Level	Depth (m)	RL (m)	Graphic Log	nscs (	Material Type		Consistency / Density	Moisture	ID No.	DCP blows/100mm		
				D d			CONCRETE.				5 10 15		
cc		-				Fill	FILL- SAND, yellow brown, fine to coarse grained.	loose to very loose	moist	SM171213-64/65 0.2-0.4	Pushed to 0.4m		
Hand Auger		0.5	-				Silty CLAY- dark brown, medium plasticity, with ironstone gravel.	firm to stiff	moist	SM171213-66 0.4-0.6			
Hand		_ 	44		сн	Natural	Becoming red brown and orange brown from 0.7mbgl.						
		-	-				Hole Terminated at 1.20m			SM171213-71 1.0-1.2			
											+20 Ref.	Likely depth to Shale Bedrock (1.	.9m).
		litior	nal C	Comm				•	•				
	No	obvi	ous	evide	ence	of	contamination, no adverse odour and i	no potential	asbesto	s containing m	ateriel (su	ch as fibro) observed during drilli	ing.
ц С. С.		Lo	ggeo	d By:	;	Ste	phen McCormack Date: 17/12/20	013	Che	cked By: S	tephen M	cCormack Date: 5/03/2014	

8 1	82 Lar	Brid ne C	ge S ove	nmen Street NSW 0 980	206	-	neering geo-environn ge N G I N E E				<b>e ID.</b> Depth: et:		BH1 6.50 r 1 of
		oject					age 2 Detailed Site Investigation		roject Nu		3017BEL		
[	Dril Dril	lling II Me	Con	npany d:	/:	Ep Pu	7-687 Canterbury Road, Sydney NSW oca Environmental Pty Ltd ish Tube / Solid Stem Auger coprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	y Alliance Property Ground Level: Easting: Northing:	RL44.4m 	appro)
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Comme	ents	Well Details Well Construction
			- - 44 5-			Fill	ASPHALT. ROADBASE- Sandy GRAVEL, grey / brown. BRICKS. FILL- Silty Gravelly CLAY, dark brown. Silty CLAY- brown and grey, medium to high plasticty, some ironstone gravel.		 moist	SM171213-67 0.25-0.4 SM171213-68 0.5-0.7			Gattio
Push Tube			- - - 43		СН		Becoming grey and orange brown from 1.0mb	ogl. becoming stiff to very stiff				1.50	Por Por
		2.0  	- - - 42			Natural	Extremely Weathered SHALE- grey brown, estimated extremely low to very low strength.		dry	SM171213-69 1.8-2.0 SM171213-70 2.0-2.2		2.50	
Solid Stem Auger			- - - 41 - - - -				Becoming estimated very low to low strength from 3.3mbgl.					3.00	
			hal (	Comm			contamination, no adverse odour and no pot	ential asbestos	containir	ng materiel (suc	th as fibro) observed o		
		Lo	gge	d By:		Ste	phen McCormack Date: 17/12/2013	Check	ked By:	Stephen Me	cCormack Date: 5	/03/2014	

											Monitoring Well Lo	og Report
; 	82 E Lan	Bridg e Co	je S ove I	nmen treet NSW 0 980	206	-	neering geo-environn ge N G I N E E			Н	ole ID. ble Depth: neet:	BH14 6.50 m 2 of 2
	-	ject l atior					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject Nu ilient:		E13017BEL City Alliance Property	
I	Drill	ing ( Met	thod	ipany :	<u>/:</u>	Pu	oca Environmental Pty Ltd sh Tube / Solid Stem Auger oprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	Ground Level: RL4 Easting: Northing:	1 <b>4.4m</b> (approx) 
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Comments	Well Details Well Construction
Solid Stem Auger		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			Natural	Extremely Weathered SHALE- grey brown, estimated extremely low to very low strength.(continued) Becoming estimated low to medium strength from 5.8mbgl.		dry			Cavein Caravel Pack
<u> </u>		- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	Comm			Hole Terminated at 6.50m					
							contamination, no adverse odour and no pote	ential asbestos	containin	g materiel (s	such as fibro) observed durin	g drilling.
Сее ви		Log	ggeo	d By:		Ste	phen McCormack Date: 17/12/2013	Chec	ked By:	Stephen	McCormack Date: 5/03/	2014

8 L	32 E Lan	Brido e Co	ge S ove	nmer street NSW 0 980	20	-	neering <u> <u> <u> <u> </u> </u></u></u>				<b>e ID.</b> Depth: et:	BH1 2.30 r 1 of
F	Proj	ject	Nan	ne:		Sta	age 2 Detailed Site Investigation	Р	roject Nu	umber: E13	017BEL	
L	-0C	atio	n / S	Site:		67	7-687 Canterbury Road, Sydney NSW	C	lient:	City	y Alliance Propert	у
۵	Drill	ing Me iipm	thoc		<i> </i> :	Pu	oca Environmental Pty Ltd sh Tube / Solid Stem Auger oprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	Ground Level: Easting: Northing:	RL44.8m (appro
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations	/ Comments
		F	-	$\bigotimes$			ASPHALT. ROADBASE- Sandy GRAVEL, grey / brown.		dry	SM171213-74 0.1-0.2 /		
		0.5	- - - 44			Fill	FILL- Silty CLAY, dark brown, low to medium plasticity, some black fragments (ash?).	firm	slightly moist	SM171213-75 0.3-0.5		
Push Tube		1.0  1.5  	- - - - - - - - - - - -		СН	Natural	Silty CLAY- red brown and brown, medium to high plasticty.	stiff	moist	SM171213-76 0.9-1.1		
		-	-				Extremely Weathered SHALE- grey to orange brown, estimated extremely low to very low strength.		dry	SM171213-77 2.1-2.3		
		- 2.5 	- - - - - - - - - - - - - - - - - - -				Hole Terminated at 2.30m					
		- - 4.5	Ē									
		litior	al C	Comn			contamination, no adverse odour and no pote	ential asbestos	containir	ng materiel (suc	h as fibro) observed	during drilling.

												Borehol	e Log Re	eport
	82 E Lan	Bridg e Co	ge S ove l	nmen treet NSW 0 980	206		geo-environr				Hole ID. Hole Depth: Sheet:			<b>3H16</b> 0.30 m 1 of 1
			Nam n / S				age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		oject N ent:	umber:	E13017BE City Alliar	EL Nce Propert	у	
	Drill		thod	ipany :	/:		EE anual Ind Auger	Date Started: Date Complete		17/12/201: 17/12/201:	3 Eas	und Level: ting: thing:	RL44.8m 	(approx)
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description		Moisture	Samp / Tests ID No	s	Observations	/ Comments	
HA 2		-	-			Eil	CONCRETE. ROADBASE- Sandy GRAVEL, grey / brown.		dry	SM171213	-72/73			
		- 0.5 - 1.0 -	-44				Hole Terminated at 0.30m Refusal on concrete slab.							
<u> </u>		obvi	ous	comm evide	ence	of	contamination, no adverse odour and no pot	ential asbestos co Checke			el (such as fib			ıg.
פ		- ;		<i>,</i> .					<i>,</i> .					

Geo Envi 82 Bridge Lane Cov M. 0431	e Stree ve NSV	t V 206	-		ppme	ntal		Hole Hole Shee	<b>e ID.</b> Depth:		<b>ΒΗ17</b> 1.10 m 1 of 1
Project N Location				age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney N	ISW		Project Numbe Client:		017BEL / Alliance Propert	y	
Drilling C Drill Meth Equipme	iod:	ıy:		E nual nd Auger		e Starteo e Compl			Ground Level: Easting: Northing:	RL44.5m 	(approx)
Method Water Level Depth (m)	RL (m) Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp / Test ID No.		Observations	/ Comments	
сс	j> br			CONCRETE				5 10 15         			
	4	XXXXXX	ΗI	FILL- Silty Gravelly CLAY, dark brown, medium to high plasticty, fine to coarse gravel, some coal like fragments and ironstone.	firm to stiff	moist	SM171213-78 0.15-0.3	Start 0.2m			
And		СН	Natural	Silty CLAY- red brown and brown, medium to high plasticty, with ironstone gravel. Becoming pale grey and orange	stiff	moist	SM171213-79 0.5-0.7				
Additiona	- 42 41 40			Hole Terminated at 1.10m Refusal, likely caused by Shale Bedrock.	no potential	asbesto	<u>1.0-1.1</u>	+20 Bouncing Ref. 1.1m	h as fibro) observed	during drillin	
	us evid			ohen McCormack Date: 17/12/20					h as fibro) observed		ıy.

Location / Site:677Drilling Company:EpDrill Method:Put	sh Tube eoprobe 7822DT	Cliv Date Started: Date Complete			017BEL Alliance Property Ground Level: Easting:	/ RL43.3m (appro
Drilling Company: Ep Drill Method: Pus Equipment: Ge	ooca Environmental Pty Ltd Ish Tube eoprobe 7822DT	Date Started: Date Complete	17	/12/2013	Ground Level:	
Drill Method: Pu: Equipment: Ge	eoprobe 7822DT	Date Complete				RL43.3m (appro
Method Water Level Depth (m) RL (m) Graphic Log USCS Symbol Material Type	Material Description	-			Northing:	
		Consistency / Density	Moisture	Samp. / Tests ID No.	Observations	/ Comments
a       4.3       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a	CONCRETE. FILL- Gravelly SAND, yellow brown, medium to coarse grained, medium to coarse gravel. FILL- Sity CLAY, dark brown, medium to high plasticty, with gravel. Sity CLAY- red brown and pale brown, medium to high plasticty. Extremely Weathered SHALE- orange brown and grey, estimated extremely low to very low strength. Hole Terminated at 1.30m	loose firm to stiff stiff	moist moist dry dry ontaining	SM171213-83 0.1-0.2 SM171213-84 0.2-0.3 SM171213-85 0.5-0.7 SM171213-86 1.2-1.3	n as fibro) observed	during drilling.

82 La	Bric ne C	lge S Cove	nmer Street NSW 80 980	206	-	Beering Benginser				e ID. Depth: et:	BH1 1.50 1 of
Pro	ojec	t Nar	ne:		Sta	ge 2 Detailed Site Investigation	Р	roject N	umber: E13	017BEL	
Lo	catio	on / S	Site:		677	7-687 Canterbury Road, Sydney NSW	C	lient:	City	Alliance Propert	У
Dri	ill M	Cor etho nent		<i>y</i> :	Pu	oca Environmental Pty Ltd sh Tube oprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	Ground Level: Easting: Northing:	RL44.0m (appr 
Method Water I evel	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations	/ Comments
Push Tube	- - - - - - - - - - - - - - - - - - -	- - .5 - - - .0 43			Fill	CONCRETE. FILL- SAND, yellow brown, fine to coarse grained. FILL- Silty Gravelly CLAY, dark brown / dark grey, fine to coarse gravel.	loose	moist	SM171213-87/88 0.2-0.3 SM171213-89 0.3-0.5		
	- - - - - - -				Nat.	CONCRETE. Extremely Weathered SHALE- brown and orange brown, estimated extremely low to very low strength. Hole Terminated at 1.50m		dry	SM171213-90 1.0-1.2 SM171213-91 1.3-1.5		
		onal (	Comn			contamination, no adverse odour and no pote	ential asbestos	containin	ng materiel (suc	h as fibro) observed	I during drilling.
No	o obv	ious/	evide	ence	e of d	contamination, no adverse odour and no pote	ential asbestos	containii	ng materiel (suc	h as fibro) observed	l during drilling.

82 I Lan	Brid ne C	ge S ove l	nmen treet NSW 0 980	206	-	neering <u> geo-environn</u> <u> geo-environn</u>			Hole Hole Shee	Depth:		BH 7.5 1 c	60 n
	-	Nam n / S				age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject Ni lient:		017BEL Alliance Propert	У		
Dril	l Me	Corr thod ent:		/:	Pu	oca Environmental Pty Ltd sh Tube / Solid Stem Auger oprobe 7822DT	Date Started: Date Complet		7/12/2013 7/12/2013	Ground Level: Easting: Northing:	RL44.7	' <b>m</b> (ap - -	)pro>
Method Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations / Com	ments	Well Details	Well Construction
cc	- - - - 0.5	- - - - - - - - - - - - - - - - - - -			Fill	CONCRETE. FILL- SAND, yellow brown, medium to coarse grained. FILL- Silty Gravelly CLAY, dark brown, medium plasticity, fine to coarse gravel, coal-like fragments.	firm	moist moist	SM171213-92/93 0.2-0.3 SM171213-94 0.35-0.5				Grout -
Push Tube	- 1.0 - _ _ _ 1.0 - _ _	- - -				Some concrete present 1.2 to 1.3mbgl. Silty CLAY- grey and red brown, medium to high plasticty, with fine to coarse ironstone gravel.	stiff	moist	SM171213-95 1.0-1.1 SM171213-96 1.3-1.45		1.00		
Solid Stern Auger	2.( 				Natural	Extremely Weathered SHALE- red brown and grey, estimated extremely low to very low strength.		dry	SM171213-97 2.0-2.3		2.00		Corroon
S 1.3.96m BTOC	- 3.5 - 4.0 - 4.0 - 4.5					Becoming estimated very low to low strength from 3.7mbgl.			SM171213-98 3.5-4.0				
			comm evide			contamination, no adverse odour and no pote	ential asbestos	containi	ng materiel (such	as fibro) observed	l during di	rilling.	

_									Ν	Ionitoring Well Log	J Rep	ort
82 B Lane	ridg e Co	je S ove l		206	-	geo-environn geo gi n geo			Hol	<b>le ID.</b> le Depth: eet:	7.5	<b>120</b> 60 m of 2
Proje Loca						age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject Ni lient:		13017BEL ty Alliance Property		
Drilli Drill Equi	Met	thod	ipany	r <u>.</u>	Ρι	ooca Environmental Pty Ltd Ish Tube / Solid Stem Auger eoprobe 7822DT	Date Started: Date Comple		7/12/2013 7/12/2013	Ground Level: <b>RL44</b> Easting: Northing:	l <b>.7m</b> (ap 	prox)
Method Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	- Observations / Comments	Well Details	Well Construction
Solid Stem Auger	- - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -			Natural	Extremely Weathered SHALE- red brown and grey, estimated extremely low to very low strength.(continued) Becoming dark grey from 7.0mbgl, estimated low to medium strength.		dry	SM171213-99 4.5-5.0	Δ		Cave-in
<u> </u>		- - - - - - - -	Comm			Hole Terminated at 7.50m	ntial asbestos	containin	ng materiel (su	uch as fibro) observed during	drilling.	
	Log	ggeo	d By:		Ste	phen McCormack Date: 17/12/2013	Check	ked By:	Stephen M	IcCormack Date: 5/03/2	014	

										Boreho	le Log Report
82 Lar	Brido ne Co	ge Si ove I		206					н	<b>Iole ID.</b> Iole Depth:	BH21 0.45 m 1 of 1
	oject				St	age 2 Detailed Site Investigation	Pr	oject Nu		E13017BEL	
	catio					7-687 Canterbury Road, Sydney NSW		ient:		City Alliance Proper	ty
Dri	lling Il Me uipm	thod	pany :	:			Date Started: Date Complete		/01/2014 /01/2014	Ground Level: Easting: Northing:	RL45.2m (approx
evel	Ê		: Log	Symbol	I Type	Material Description		υ	Samp. / Tests	Observation	is / Comments
Method Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type			Moisture	ID No.		
<u> </u>			2 A A			CONCRETE.					
HA / Crow Bar 🕅		45 -			Fill	FILL- Sandy GRAVEL with Bricks, fine to coarse sand, fine to coarse gravel.	grained	moist	SM060114-8 0.2-0.4	30	
Ŧ	- 0.5	; -				Hole Terminated at 0.45m Refusal.					
GEE BH LOG BELMORE E 13017BEL.GPJ GEE CH.GDT 5/3/14 10:23:07 AM           Z         Z		-44									
bA			omm	ente	ـــــــــــــــــــــــــــــــــــــ	1					
		ous gged				contamination, no adverse odour and no potent	tial asbestos o Check			such as fibro) observe	

8 L	32 E _ane	Bridg e Co	je S ove I	nmen treet NSW 0 980	20		neering <u> <u> <u> <u> </u> </u></u></u>	onme			Hole Hole Shee	Depth:	BH2 0.50 r 1 of
	-	ect					age 2 Detailed Site Investigation			Project Numbe		017BEL	
	_0Ca	atior	ו / S	ite:		67	7-687 Canterbury Road, Sydney	NSW		Client:	City	Alliance Proper	ty
۵	Drill	ing ( Mei ipm	thod	ipany	/:		E anual and Auger / Crow Bar		e Starteo			Ground Level: Easting: Northing:	RL45.2m (appro
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp / Tests ID No.	DCP blows/100mm	Observation	s / Comments
cc				D b			CONCRETE.				5 10 15		
HA / Crow Bar		- 0.5		$\bigotimes$		Fill	FILL- Sandy GRAVEL, brown / grey, crushed concrete.	medium dense	moist	SM060114-81/82 0.2-0.4	Start 0.5m		
		- 1.0 - 1.0 - 1.1 - 1.1 - 1.5 - 2.0 - 2.0 - 2.0 - 2.0 - 2.0 - 3.0 - 3.0 - 3.1 -	- 44 - 44 				HA and DCP Refusal.				+20 Bouncing Ref. 0.6m		
				comm evide			contamination, no adverse odour and	no potential	asbesto	s containing m	ateriel (suc	h as fibro) observe	d during drilling.
				l By:		<u> </u>	phen McCormack Date: 6/01/20			cked By: SI		Cormack Date:	

												Borehole Log Report
8 L	2 E .ane	Bridg ∋ Co	e St ve N	imen reet NSW 980	206	-		nme				e ID.     BH23       Depth:     1.40 m       et:     1 of 1
	-	ect N ation					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney N	SW		Project Numbe Client:		3017BEL y Alliance Property
C	Drill	ng C Meti ipme	hod	pany :	/:		E Inual nd Auger		te Starteo te Compl			Ground Level: <b>RL45.2m</b> (approx Easting: Northing:
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samı / Test ID No.	D. S DCP blows/100mm	Observations / Comments
СС			45	A V			CONCRETE. FILL- Silty CLAY, grey brown and red	firm	moist		5 10 15 Start 0.1m	
ler				$\bigotimes$		Fill	brown, medium plasticity, some ironstone gravel.			SM060114-83 0.2-0.4		
Hand Auger		- - 1.0	- - - 44		СН	Natural	FILL- Silty CLAY, dark brown, low to medium plasticity, with gravel. Silty CLAY- red / brown, medium to high plasticty.	firm	moist	SM060114-84/8 0.6-0.8 SM060114-86 0.9-1.1		
		- 2.5 - 2.5 - 3.0 - 3.0 - 3.5 - 3.5 - 3.5 - 4.0 - 4.0					Hole Terminated at 1.40m				+20 for 50mm Ref. 1.85m	Likely depth to Shale Bedrock (1.85m).
				omm			contamination, no adverse odour and r	no potential	l asbesto	s containing m	ateriel (suo	ch as fibro) observed during drilling.
		Log	ged	By:	9	Stei	phen McCormack Date: 6/01/201	4	Che	cked By: S	tephen M	cCormack Date: 5/03/2014

Project Name: Location / Site: Drilling Compar Drill Method: Equipment:	ny:	Stage 2 Detailed Site Investigation 677-687 Canterbury Road, Sydney NS GEE Manual Hand Auger / Crow Bar Material Description CONCRETE. FILL- SAND, yellow brown, medium to coar grained. FILL- Sandy GRAVEL / Gravelly SAND, di brown and brown, some clay, fine to coars gravel, some cobble sized rocks. Hole Terminated at 0.70m Refusal on Brick.	Date Started Date Comple	-		3017BEL  y Alliance Property Ground Level: Easting: Northing: Observations	RL45.2m (appro
Drilling Compar Drill Method: Equipment: HV (Com Bar MaterLevel MaterLevel I W (Low Bar MaterLevel I W (Low Bar Mater	ny:	GEE Manual Hand Auger / Crow Bar Material Description CONCRETE. FILL- SAND, yellow brown, medium to coar grained. FILL- Sandy GRAVEL / Gravelly SAND, di brown and brown, some clay, fine to coars gravel, some cobble sized rocks. Hole Terminated at 0.70m	Date Started Date Comple	ted: 6	/01/2014 /01/2014 Samp. / Tests ID No. SM060114-87/88 0.1-0.25 SM060114-89	Ground Level: Easting: Northing: Observations	RL45.2m (appro
Drill Method: Equipment:		Manual Hand Auger / Crow Bar	Date Comple	eted: 6	/01/2014 Samp. /Tests ID No. SM060114-87/88 0.1-0.25 SM060114-89	Easting: Northing: Observations	
CC		CONCRETE. FILL- SAND, yellow brown, medium to coa grained. FILL- Sandy GRAVEL / Gravelly SAND, d. brown and brown, some clay, fine to coars gravel, some cobble sized rocks. Hole Terminated at 0.70m	arse loose medium ark dense	moist	/ Tests ID No. SM060114-87/88 0.1-0.25 SM060114-89		/ Comments
Image: Second		FILL- SAND, yellow brown, medium to coardinate of the standard strength of the	ark dense	γ	0.1-0.25 SM060114-89		
- 3.0 - 42 - 42  - 3.5        	Imments						
No obvious evid	dence (	of contamination, no adverse odour and no	potential asbestos	containir	ng materiel (suo	ch as fibro) observed	during drilling.

			Boreho	le Log Report
Geo Environmental Engineering 82 Bridge Street Lane Cove NSW 2066 M. 0431 480 980			Hole ID. Hole Depth: Sheet:	BH25 0.75 m 1 of 1
Project Name: Stage 2 Detailed Site Location / Site: 677-687 Canterbury	-	Project Nun Client:	ber: E13017BEL City Alliance Proper	rty
Drilling Company: GEE Drill Method: Manual Equipment: Hand Auger / Crow I	Date		1/2014 Ground Level: 1/2014 Easting: Northing:	RL42.7m (approx)
Method Water Level Depth (m) RL (m) Graphic Log USCS Symbol Material Type	erial Description	Consistency / Density Moisture	Samp. / Tests ID No.	ns / Comments
endium to high plas gravel. Silty CLAY- pale gravel.	ey, some orange brown, sticty, with ironstone gravel. 0.75m Shale Bedrock.	m to stiff moist	W060114-90/91 0.2-0.4           SM060114-92 0.4-0.55             0.4-0.55             materiel (such as fibro) observer	ed during drilling.
播 9 표 표 Logged By: <b>Stephen McCormack</b>	Date: 6/01/2014	Checked By:	Stephen McCormack Date:	5/03/2014

										Borehole	e Log Report
Geo En 82 Bride Lane C M. 043	ge S ove I	treet NSW	206	-	neering <u> <u> <u> </u> <u> </u></u></u>	nme				<b>e ID.</b> Depth: et:	BH26 1.20 m 1 of 1
Project Locatio					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney N	SW		Project Numbe Client:		3017BEL y Alliance Property	,
Drilling Drill Me Equipm	thod		<u>r:</u>		E inual nd Auger / Crow Bar		te Startec te Comple			Ground Level: Easting: Northing:	RL45.2m (approx)
Method Water Level Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp / Test ID No.		Observations /	Comments
	45				CONCRETE. FILL- SAND and CLAY, yellow	loose	moist	SM060114-93	5 10 15		
3.0	- - - -			E	Silty CLAY- red brown, medium to	firm	moist	0.15-0.3 SM060114-94 0.5-0.6 SM060114-95	Start 0.3m		
	- - - - - - -			Natural	high plasticty, with some fine to coarse ironstone gravel. Becoming pale grey and orange brown from 1.0mbgl.			0.6-0.8			
	- $        -$				Hole Terminated at 1.20m				+20 for 50mm Ref. 1.55m	Likely depth to Shale	Bedrock (1.55m).
Addition No obvi					contamination, no adverse odour and n	o potentia	l asbestos	s containing m	ateriel (suc	ch as fibro) observed	during drilling.
Lo	ggeo	d By:	;	Step	ohen McCormack Date: 6/01/201	4	Chee	cked By: S	tephen M	cCormack Date:	5/03/2014

											Borehol	e Log R	eport
82 La	2 B ane	ridg e Co	e Si ve I	treet NSW 980	206	-	geo-environ				e ID. Depth: et:		BH27 1.20 m 1 of 1
	-	ect N ation					age 2 Detailed Site Investigation 7-687 Canterbury Road, Sydney NSW		roject N lient:		017BEL y Alliance Proper	ÿ	
D	rill	ng ( Met pme	hod	ipany :	y:		EE anual Ind Auger / Crow Bar	Date Started: Date Complet		5/01/2014 5/01/2014	Ground Level: Easting: Northing:	RL45.2m 	(approx
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	Material Description	Consistency / Density	Moisture	Samp. / Tests ID No.	Observations	s / Comments	
СС			 		CL	Fill	CONCRETE. FILL- SAND. Silty CLAY- dark brown, low to medium	/ firm	moist	SM060114-96/97 0.2-0.4			
HA / Crow Bar		0.5 - - - 1.0	- - - -		СН	Natural	plasticity. <b>Silty CLAY</b> - red brown, medium to high plasticty. Becoming pale grey and orange brown from	firm to stiff	moist	SM060114-98 0.5-0.7			
			- - - - - - - - - - - - - - - - - - -				1.0m. Hole Terminated at 1.20m						
<u> </u>	0 0	bvic	ous		ence	of	contamination, no adverse odour and no pot						ng.
		Log	ged	l By:	:	Ste	phen McCormack Date: 6/01/2014	Check	ked By:	Stephen Mo	cCormack Date:	5/03/2014	

												Borehole Log Repor
	82 E Lan	Bridg e Co	je S ove I	nmen treet NSW 0 980	206	-		nme				e ID. BH28 Depth: 1.00 n et: 1 of
	Proj	ject l	Nam	ne:		Sta	age 2 Detailed Site Investigation			Project Numbe	er: <b>E1</b> :	3017BEL
	Loc	atior	ו / S	ite:		67	7-687 Canterbury Road, Sydney N	SW		Client:	City	y Alliance Property
	Drill	ing ( Met iipme	thod	ipany :	<u>/:</u>		E inual nd Auger / Crow Bar		te Starteo te Compl			Ground Level: <b>RL45.2m</b> (approx Easting: Northing:
	evel	Ē		Log	ymbol	Type	Material Description	incy /		Samp / Test	). S	Observations / Comments
Method	Water Level	Depth (m)	RL (m)	Graphic Log	USCS Symbol	Material Type	iviatenai Description	Consistency / Density	Moisture	ID No.	DCP blows/100mm	Observations / Comments
				<u>م</u> م			CONCRETE.				5 10 15	
СС		F	45			Fill	FILL- Silty Gravelly CLAY, dark	firm	moist	SM060114-99	Start 0.2m	
HA / Crow Bar		- 0.5 - - - 1.0	-		СН	Natural	FILE- Silty Gravelly CLAY, dark brown. Silty CLAY- grey and brown, medium to high plasticty, some fine to coarse ironstone gravel. Becoming pale grey and orange brown mottled from 0.7mbgl.	firm stiff	moist	SM060114-100 0.3-0.5		
DELIGING GEE CHIGUT SISTIA 10.25.12 AM		- - - - - - - - - - - - - - - - - - -	-44				Hole Terminated at 1.00m				+20 Ref. 1.5m	Likely depth to Shale Bedrock (1.5m).
<u> </u>				comm			contamination, no adverse odour and r	no potentia	l asbesto	s containing m	ateriel (suc	h as fibro) observed during drilling.
		Log	ggeo	l By:	;	Ste	phen McCormack Date: 6/01/201	4	Che	cked By: S	tephen M	cCormack Date: 5/03/2014



## **APPENDIX I**

Quality Assurance Assessment Report



## **I1. INTRODUCTION**

A detailed Quality Assurance (QA) assessment, including the analysis of Quality Control (QC) samples, was carried out by GEE to determine the reliability of field procedures and analytical results.

# I2. QUALITY ASSURANCE

Quality Assurance (QA) involves all of the actions, procedures, checks and decisions undertaken to ensure the representativeness and integrity of samples and accuracy and reliability of analysis results (reference I1).

In accordance with AS4482.1 (reference I2), a series of QA procedures were integrated within the sampling and analysis plan and included:

- ♦ The collection of Quality Control (QC) samples.
- ♦ The use of standardised field sampling forms developed by GEE.
- Documentation of calibration and use of field instruments.

To ensure QA in the field, samples were collected by experienced and trained personnel using appropriate methods detailed herein, including appropriate sample handling, containment and transport, and calibrated equipment. Additionally QC samples were collected and analysed as discussed in Section I3.

To ensure QA in the laboratory, GEE used laboratories that are NATA accredited for the analytical tests carried out, therefore it is reasonable for GEE to rely on the laboratories to be proficient in all tests conducted. This encompasses all actions, procedures, checks and decisions undertaken, to ensure the accuracy and reliability of the analysis results. As part of the laboratory QA, QC samples were analysed with each batch of samples as part of this investigation as required by NATA. A discussion of the laboratory QC samples analysed as part of this investigation is provided in Section I3.3.2.



# I3. QUALITY CONTROL

QC involves those parts of QA which serve to monitor and measure the effectiveness of QA procedures. QC samples assess sample integrity, accuracy and precision and can be separated into field and laboratory QC.

### **I3.1 DEFINITIONS**

Table I1 provides a description and objective of each of the field and laboratory QC samples used during this investigation.



#### **Table I1:** QC Sample Types, Descriptions and Recommended Frequency of Analysis

Туре	Description	Purpose	<b>Recommended Frequency</b>
	FIELD QC SAMPLES		•
Blind	A sample collected at the same time and from the same sampling point as the corresponding primary sample ¹ ,	Used to evaluate total sampling	In accordance with AS4482.1
Replicate	and analysed at the same laboratory. Blind replicates are collected, preserved, stored, transported and	and analysis precision and, in the	(reference I2) and NEPM
	analysed in the same manner as the primary sample, with the laboratory having no knowledge of the source	case of soil samples, sample	(reference I3) it is
	of the replicate sample. The assessment of blind replicates samples is undertaken by calculating the Relative	variability.	recommended that 1 blind
	Percent Difference (RPD) which is defined as:		replicate sample is collected for
			every 20 primary samples.
	Result No. 1 – Result No. 2		
	RPD (%) = $100 \text{ x}$ Mean Result		
Split	A sample collected at the same time and from the same sampling point as the corresponding primary sample,	Used to provide a check on the	In accordance with AS4482.1
Duplicate	and analysed at a separate laboratory. Split duplicates are collected, preserved, stored, transported and	analytical proficiency of the	(reference I2) and NEPM
	analysed in the same manner as the primary sample, with the laboratories having no knowledge of the	laboratories and hence precision	(reference I3) it is
	purpose of the sample. The assessment of split duplicates samples is undertaken by calculating the Relative	and comparability.	recommended that 1 split
	Percent Difference (RPD) which is defined as:		duplicate sample is collected for
			every 20 primary samples.
	Result No. 1 – Result No. 2		
	RPD (%) = $100 \text{ x}$ Mean Result		
Rinsate	This is a sample of distilled or de-ionised water poured over the surface of a decontaminated piece of	Provides an assessment of	In accordance with AS4482.1 –
	sampling equipment and collected in appropriate laboratory supplied sample containers. The sample is then	potential cross contamination of	(reference I2) one rinsate
	analysed for contaminants of concern analysed as part of the investigation.	chemicals from sampling	sample should be collected each
		equipment caused by inadequate	day per piece of sampling
		decontamination procedures.	equipment and.

¹ Primary samples are the original representative samples of soil or groundwater collected for analysis to determine aspects of their chemical composition. Primary samples are the original sample taken from a particular location and other samples from the same location are duplicates, replicates or splits.



Table I1 Continued				
Туре	Description	Purpose	Recommended Frequency	
Trip Blank	Trip blanks are laboratory supplied test samples of analyte-free media (either washed sand or de-ionised water) which remain in the sample storage eskies during sampling activities and returned to the laboratory unopened. For soil sampling programmes, the trip blank consists of acid-washed quartz sand that has been heated to 400°C. For water sampling programs trip blanks comprise pre-washed glass vials containing distilled or de-ionised water with appropriate preservatives.	Used to measure cross- contamination during sampling, transport, sample preparation and analysis.	Industry standard is 1 trip blank per batch of primary samples.	
	The USEPA has shown that cross-contamination only occurs with volatile organics (reference I4), therefore, trip blanks are only analysed for volatile organics.			
Trip Spike	<ul> <li>Trip spikes, like trip blanks, are supplied by the primary laboratory using analyte-free media (either washed sand or de-ionised water) and remain in the sample storage eskies during sampling activities and returned to the laboratory unopened. The sample media, however, is spiked with BTEX.</li> <li>For water sampling programmes the BTEX concentration is known and standardised by each laboratory, while for soil sampling programmes the exact spike concentration is not known, rather two identical jars of sand are spiked the same concentration with one sample becoming the trip-spike and the other becoming a control sample, which remains in a refrigerator at the laboratory.</li> </ul>	Used to monitor VOC losses during transit.	Industry standard is 1 trip spike per batch of primary samples where volatile concentrations are being measured.	
	The trip spike is analysed after returning from the field and the % recovery of the known spike (for water sampling programs), or of the control sample (for soil sampling programs), is calculated.			



#### Table I1 Continued

Туре	Description	Purpose	<b>Recommended Frequency</b>
	LABORATORY QC SAMPLES		
Laboratory	Laboratory duplicates are field samples which are prepared and analysed in the same manner twice.	Determines analytical precision for	NATA specifies 1 per 10 samples
Duplicate		a sample batch	for trace element and inorganic
	The assessment of laboratory duplicates is undertaken by calculating the (RPD) which is defined as:		analysis
	<u>Result No. 1 – Result No. 2</u>		
	RPD (%) = 100 x Mean Result		
Laboratory	Laboratory Control Samples (LCS) are analyte-free matrices (de-ionised water or clean sand) spiked with a	Determines analytical accuracy	NATA specifies 1 per batch of up
Control	known concentration of target analytes and carried through the entire preparation and analysis.	and precision for a batch of	to 20 samples
Sample		samples	
(LCS)	Assessment of LCS is undertaken by calculating the percent recovery (%R) of the spike which is defined as:		
	<u>Spikes Sample Result (SSR) – Sample Result (SR)</u>		
	Percent Recovery (%R) = 100 x Concentration of Spike Added (SA)		
Surrogates	Surrogates are organic compounds added to field samples and laboratory QC samples prior to preparation.	Used to demonstrate that the	Added to every blank, field and
	They are similar in chemical behaviour to the target analytes and are not expected to be present in samples.	surrogate does not interfere with	laboratory QC sample
	form part of the laboratory QC for organic analyses, and are used to indicate the presence of sample specific	the target analytes, therefore	
	interferences. The surrogate is added at the extraction stage then analysed with the batch of samples.	determines analytical accuracy for	
	Like LCSs, surrogates are assessed by calculating the percent recovery (%R), although the definition is slightly	each sample	
	different as shown below:		
	Spiked Sample Result (SSR)		
	Percent Recovery (%R) = 100 x Concentration of Spike Added (SA)		
Matrix Spikes	Field samples spiked with a known concentration of a target analytes and carried through the entire	Determine the effects of matrix	Performed at least 1 per batch
	preparation and analysis.	interferences on analytical	of up to 20 samples.
		accuracy of a sample.	
	Matrix spike samples are assessed by calculating the percent recovery (%R) of the spike which is defined as:		
	Spikes Sample Result (SSR) – Sample Result (SR)		
	Percent Recovery (%R) = 100 x Concentration of Spike Added (SA)		
Method	Method blanks are an analyte-free matrices (reagent water or clean sand) that is carried through the entire	Establishes that laboratory	Prepared with every batch of up
Blank	preparation and analysis.	contamination does not cause	to 20 samples for all organic and
		false positives.	inorganic analyses.



## I3.2 CRITERIA / ACCEPTABLE RANGE

The QC Acceptance Criteria adopted for this investigation is provided in Table I2 and is in general accordance with the Table 4 of AS4482.1 (reference I2) and NEPM (reference I3).

able 12: QC Sample Acceptance Criteria
----------------------------------------

QC Sample	Criteria / Acceptable Range			
FIELD QC SAMPLES				
Blind Replicate & Split Duplicate	RPD < 50 % When average concentration is > 10 x LOR/PQL ² RPD < 75 % When average concentration is 5 to 10 x LOR/PQL RPD < 100 % When average concentration is< 5 x LOR/PQL			
Rinsate	Analytical Result < LOR/PQL			
Trip Blank	Analytical Result < LOR/PQL			
Trip Spike	± 30%			
LABORATORY QC SAMPLES				
Laboratory Duplicates	RPD < 30 % When average concentration is > 10 x LOR/PQL RPD < 50 % When average concentration is 4 to 10 x LOR/PQL RPD < 100 % When average concentration is< 4 x LOR/PQL			
Laboratory Control Samples	%R of 70 – 130% (General analytes) %R of 50 – 130% (Phenols) %R of 60 – 130% (OCP/OPPs) %R of 62 – 130% (Chromium)			
Surrogates	%R of 70 – 130% (General analytes) %R of 50 – 130% (Phenols) %R of 60 – 130% (OCP/OPPs)			
Matrix Spikes	%R of 70 – 130% (General analytes) %R of 50 – 130% (Phenols) %R of 60 – 130% (OCP/OPPs) %R of 62 – 130% (Chromium)			
Method Blanks	Analytical Results < LOR/PQL			

If data do not meet the QC Acceptance Criteria then a judgement is made as to whether the exceedance is critical in relation to the suitability of the data set. Otherwise the following steps will be taken:

- ◊ Request that the laboratory re-check or even re-analyse the sample.
- ◊ Inspect the sample for anomalies which may be causing the failure.
- ◊ If necessary, undertake additional sampling and analyses.

 $^{^2}$  Both the LOR and PQL are interchangeable terms used by laboratories and is defined as the lowest concentration that can be reliably achieved within specific limits of precision and accuracy during routine laboratory operating conditions (reference I5).



## I3.3 RESULTS

I3.3.1 Field QC Samples

Field QC samples collected and analysed as part of this investigation comprised:

#### Soil Sampling

- Five blind replicates (SM161213-03, SM161213-17, SM171213-65, SM171213-93 and SM060114-82)
- Five split duplicates (SM161213-48, SM171213-73, SM171213-88, SM060114-85 and SM060114-91)
- Three trip blanks (labelled 'trip blank') and dated 16 Dec 2013, 17 Dec 2013 & 6 Jan 2014
- Three trip spikes (labelled 'trip spikes') and dated 16 Dec 2013, 17 Dec 2013
   & 6 Jan 2014
- Two rinsate blanks (each from the hand auger used during each group of sampling).

#### Water Sampling

- ♦ One blind replicate (SM060114-102)
- One trip blank (labelled 'trip blank')
- One trip spike (labelled 'trip spike')

A split duplicate sample was not collected during the groundwater sampling event due to the small number of samples analysed.

Tabulated results are presented at the conclusion of this Appendix. Table I3 and I4 provides a summary of the frequency of QC samples and lists results which do not meet the criteria established in Table I2.


Туре	Frequency Conducted	Results Not Meeting the Criteria
Blind	Lead - 5 per 68 samples (7.3%)	
Replicates	Other Metals - 5 per 59 samples (8.5%)	
	TRH/BTEX - 4 per 41 samples (9.7%)	
	PAHs - 3 per 30 samples (10.0%)	
	OCP/PCB - 1 per 12 samples (8.3%)	
Split Duplicates	Lead - 5 per 68 samples (7.3%)	
	Other Metals - 5 per 59 samples (8.5%)	
	TRH/BTEX - 3 per 41 samples (7.3%)	
	PAHs - 3 per 30 samples (10.0%)	
	OCP/PCB - 1 per 12 samples (8.3%)	
Trip Blank	1 per sample batch	
Trip Spike	1 per sample batch	Recoveries of between 62% and 63% for the trip spike dated 16 Dec 2013.
Rinsate	1 from the hand auger taken on 17 Dec 2013 then the 6 Jan 2014	

Туре	Frequency Conducted	Results Not Meeting the Criteria
Blind Replicate	1 per 6 samples (16.7%)	
Trip Blank	1 per sample batch	
Trip Spike	1 per sample batch	

The elevated low recoveries in the trip spike dated 16 Dec 2013 are attributed to the fact that the trip spike was obtained at least 24hours before sampling. Although low, which indicates a partial loss of volatiles in the samples, volatiles were not detected in the samples collected on this day.

## I3.3.2 Laboratory QC

Laboratory QC results are provided in the laboratory reports while a summary of the results which exceeded the acceptance criteria is provided in Table I5.



Table 15: QC Sample Acceptance Criteria

Туре	Results Exceeding Criteria
Laboratory Duplicates	
Laboratory Control	
Samples	
Surrogates	
Matrix Spikes	
Method Blanks	

# I4. DATA QUALITY ASSESSMENT

In accordance with reference I6, Data Quality Indicators (DQIs), specifically, precision, accuracy, representativeness, completeness and comparability, were used to assess the reliability of field procedures and analytical results.

# I4.1 PRECISION

This is the measure of the variability (or reproducibility) of the data. In the field precision is achieved by using standard operating procedures which were adopted by GEE during this investigation. For laboratory analysis precision is assessed using blind replicates and trip spikes. The measured RPDs for the blind replicate samples and split samples were considered acceptable as were the analytical results for the trip spike.

# I4.2 ACCURACY

Accuracy is a measure of the closeness of a measurement to the true parameter value. In the field, accuracy is achieved by using standard operating procedures which were adopted by GEE. For laboratory analysis, accuracy is assessed using tip blanks, rinsate blanks, method blanks, matrix spikes, surrogates and laboratory control samples. Considering that these QC samples were of an acceptable standard, GEE considers the laboratory data set to be accurate.

# **I4.3 REPRESENTATIVENESS**

This is the confidence (expressed qualitatively) that the data are representative of each media present on the site. This is achieved in the field and laboratory by using an adequate number of sampling points to characterise the site and ensuring that the samples collected were representative of the media from which they were collected. Additionally, samples should be analysed within necessary holding times depending on the analyte.



Environmental samples were collected from each borehole in general accordance with techniques described in Australian Standards AS4482.1 (reference I2) AS4482.2 (reference I7) and NEPM (reference I1), to maintain the representativeness and integrity of the samples. The number of sampling points exceeded the minimum required sampling density as defined by NSW EPA (reference I8), however, were considered sufficient for the purpose of this investigation.

Finally all samples were analysed within holding times.

#### I4.4 COMPLETENESS

This is a measure of whether all the data necessary to meet the project objectives, were collected. In the field and laboratory, this is achieved by sampling all critical locations and depths using acceptable methods and ensuring samples are analysed for appropriate chemicals.

GEE selected sufficient a sufficient number of sample points for the purpose of the investigation as defined by the NSW EPA (reference I8). Additionally, samples were analysed for chemicals of concern based on appropriate field screening measures and logging of unusual aesthetics which may indicate contamination. Combined with the fact that standard operating procedures were adopted by GEE, the investigation is assessed as being complete.

# I4.5 COMPARABILITY

This is a measure of confidence that data may be considered to be equivalent for each sampling and analysis event. Soil samples were collected by experienced GEE personnel using standard operating procedures and analysed in accordance with NATA accredited laboratory methods. The comparability of the data should be consistent as sampling protocols were employed throughout the duration of the fieldwork and analysis was undertaken by NATA registered laboratories using accredited analytical methods.

# **I5.** CONCLUSION

A review of the DQIs indicates that the field procedures and analytical results adopted for this investigation are able to be relied upon for making conclusions and recommendations regarding the contamination status of the site.



#### References

- NEPC, 1999: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(2) Data Collection, Sample Design and Reporting.
- 12. Australian Standard AS4482.1 2005: Guide to the sampling and investigation of potentially contaminated soil Part 1: Non-volatile and semi-volatile compounds.
- NEPC, 1999: National Environment Protection Council (1999). National Environment Protection (Assessment of Site Contamination) Measure. Schedule B(3) Guideline of Laboratory Analysis of Potentially contaminated Soils.
- I4. *Keith, 1991: Environmental sampling and Analysis, A practical guide. Lewis Publishers.*
- I5. Popek (2003). Sampling and Analysis of Environmental Chemical Pollutants. Academic Press.
- NSW DEC (2006) Contaminated Sites: Guidelines for NSW Site Auditor Scheme, 2nd Edition.
- 17. Australian Standard AS4482.2 1999: Guide to the sampling and investigation of potentially contaminated soil Part 2: Volatile substances.
- I8. NSW EPA, 1995: Environment Protection Authority NSW, 1995: Contaminated Sites: Sampling Design Guidelines, EPA NSW.

## **SOIL - Blind Replicate Results**

	Sa	ample Date	16/12/2014	16/12/2014		16/12/2014	16/12/2014		17/12/2013	17/12/2013		17/12/2013	17/12/2013		6/01/2014	6/01/2014	
	Sample Ider	ntification	SM161212-02	SM161213-03	RPD	SM161213-16	SM161213-17	RPD	SM171213-64	SM171213-65	RPD	SM171213-92	SM171212-03	RPD	SM060114-91	SM060114-82	RPD
Analyte	Units	LOR															
Total Metals Arsenic	mg/kg	4	Envirolab 7	Envirolab <4		Envirolab 5	Envirolab 5	0%	Envirolab <4	Envirolab <4		Envirolab <4	Envirolab <4		Envirolab <4	Envirolab <4	
Cadmium	mg/kg	4 0.5	<0.4	<0.4		<0.4	<0.4		<0.4	<0.4		<0.4	<0.4		<0.4	<0.4	
		0.5			36%			40%	2		40%			0%			22%
Chromium	mg/kg	1	13	9	5%	3	2		-	3	40 <i>%</i> 37%	2	2		5	4	39%
Copper	mg/kg	1	20	19		<1	<1		22	32			<1		33	49	20%
Lead	mg/kg	•	13	14	7%	3	2	40%	1	2	67%	4	4	0%	220	180	
Mercury	mg/kg	0.1	<0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
Nickel	mg/kg	1	2	<1			1	0%		2	67%	1	1	0%	3	3	0%
Zinc otal Polychlorinated	mg/kg	I	10	9	11%	6	4	40%	5	6	18%	7	5	33%	10	16	46%
Total PCBs	mg/kg	0.1				-0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
Prganochlorine Pestic		0.1				<0.1	<0.1		<0.1	<0.1		<0.1	<0.1		<0.1	<0.1	
НСВ	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
alpha-BHC	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
gamma-BHC	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
beta-BHC	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Heptachlor	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
delta-BHC	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Aldrin	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Heptachlor Epoxide	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
gamma-Chlordane	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
alpha-chlordane	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Endosulfan I	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
pp-DDE	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Dieldrin	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Endrin	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
pp-DDD	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Endosulfan II	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
pp-DDT	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Endrin Aldehyde	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Endosulfan Sulphate		0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
Methoxychlor	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1			<0.1		
olycyclic Aromatic H	lydrocarbons																
Naphthalene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Acenaphthylene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Acenaphthene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Fluorene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Phenanthrene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Anthracene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Fluoranthene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Pyrene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Benz(a)anthracene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Chrysene	mg/kg	0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Benzo(b&k)fluoranthen		0.2				<0.2	<0.2		<0.2			<0.2	<0.2		<0.2	<0.2	
Benzo(a)pyrene	mg/kg	0.05				<0.05	<0.05		<0.05			<0.05	<0.05		<0.05	<0.05	
Indeno(1.2.3.cd)pyren		0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Dibenz(a.h)anthracene		0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
Benzo(g.h.i)perylene		0.1				<0.1	<0.1		<0.1			<0.1	<0.1		<0.1	<0.1	
TOTAL PAHs	mg/kg	0.1															
TEX																	
Benzene	mg/kg	0.2				<0.2	<0.2		<0.2	<0.2		<0.2	<0.2		<0.2	<0.2	
Toluene	mg/kg	0.5				<0.5	<0.5		<0.5	<0.5		<0.5	<0.5		<0.5	<0.5	
Ethylbenzene	mg/kg	0.5				<1	<1		<1	<1		<1	<1		<1	<1	
meta- & para-Xylene		0.5				<2	<2		<2	<2		<2	<2		<2	<2	
ortho-Xylene	mg/kg	0.5				<1	<1		<1	<1		<1	<1		<1	<1	
otal Petroleum Hydro																	
C6 - C9 Fraction	mg/kg	10				<25	<25		<25	<25		<25	<25		<25	<25	
C10 - C14 Fraction	mg/kg	50				<50	<50		<50	<50		<50	<50		<50	<50	
C15 - C28 Fraction C29 - C36 Fraction	mg/kg	100				<100	<100		<100	<100		<100	<100		<100	<100	
	mg/kg	100	1			<100	<100		<100	<100		<100	<100		<100	<100	

Values in Bold Indicate: RPD > 50 % When average concentration is > 10 x LOR

RPD > 75 % When average concentration is 5 to 10 x LOR

RPD > 100 % When average concentration is  $< 5 \times LOR$ 

## SOIL - Split Duplicate Results

	Sa	mple Date	16/12/2014	16/12/2014		17/12/2013	17/12/2013		17/12/2013	17/12/2013		6/01/2014	6/01/2014		6/01/2014	6/01/2014	
Sa	ample Iden	tification	CM141010 47	CM141010 40	RPD	SM171010 70	CM171010 70	RPD	SM171012 07	CM171212 00	RPD	SM040114 84	SM040114 95	RPD	SM040114 00	SM040114 01	RPD
Analyte	Units	LOR	SM161213-47	SM161213-48		SM171213-72	SM171213-73			SM171213-88		SM060114-84	SM060114-85		SM060114-90	SM060114-91	
Total Metals		-	Envirolab	MGT		Envirolab	MGT		Envirolab	MGT		Envirolab	MGT		Envirolab	MGT	
Arsenic	mg/kg	4	<4	3.5		<4	4		5	5.2	4%	8	4.6	54%	7	6.2	12%
Cadmium	mg/kg	0.5	<0.4	<0.4		<0.4	<0.4		<0.4	<0.4		<0.4	<0.4		<0.4	<0.4	
Chromium	mg/kg	1	5	<5		17	24	34%	3	<5		18	15	18%	5	6.1	20%
Copper	mg/kg	1	7	<5		4	<5		4	<5		23	23	0%	18	18	0%
Lead	mg/kg	1	35	39	11%	130	230	56%	<1	<5		45	31	37%	14	14	0%
Mercury	mg/kg	0.1	<0.1	<0.05		<0.1	0.07		<0.1	<0.05		0.1	<0.1		<0.1	<0.1	
Nickel	mg/kg	1	3	<5		1	<5		1	<5		5	<5		1	<5	
Zinc	mg/kg	1	85	89	5%	25	39	44%	2	<5		120	100	18%	11	15	31%
<b>Total Polychlorinated bipl</b>	henyls																
Total PCBs	mg/kg	0.1							<0.1	<0.5					<0.1		
Organochlorine Pesticides													1				
HCB	mg/kg	0.1							<0.1	<0.05					<0.1		
alpha-BHC	mg/kg	0.1							<0.1	<0.05					<0.1		
gamma-BHC	mg/kg	0.1							<0.1	<0.05			-		<0.1		
beta-BHC	mg/kg	0.1							<0.1	<0.05			-		<0.1		
Heptachlor	mg/kg	0.1							<0.1	<0.05		-			<0.1		
delta-BHC	mg/kg	0.1				-			<0.1	<0.05		-	-		<0.1		
Aldrin	mg/kg	0.1							<0.1	<0.05					<0.1		
Heptachlor Epoxide	mg/kg	0.1							<0.1	<0.05					<0.1		
gamma-Chlordane	mg/kg	0.1							<0.1	<0.05					<0.1		
alpha-chlordane	mg/kg	0.1							<0.1	< 0.05					<0.1		
Endosulfan I	mg/kg	0.1							<0.1	< 0.05					<0.1		
pp-DDE	mg/kg	0.1							<0.1	< 0.05					<0.1		
Dieldrin	mg/kg	0.1							<0.1	< 0.05					<0.1		
Endrin	mg/kg	0.1							<0.1	<0.05					<0.1		
pp-DDD	mg/kg	0.1							<0.1	<0.05					<0.1		
Endosulfan II	mg/kg	0.1							<0.1	<0.05					<0.1		
pp-DDT	mg/kg	0.1		-		_	-		<0.1	<0.2		_	-		<0.1		
Endrin Aldehyde	mg/kg	0.1							<0.1	<0.05					<0.1		
Endosulfan Sulphate	mg/kg	0.1							<0.1	<0.05					<0.1		
Methoxychlor	mg/kg	0.1				-			<0.1	<0.05			-		<0.1		
Polycyclic Aromatic Hydro		0.1							40.1	40.00					-0.1		
Naphthalene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		<0.1	<0.5		<0.1		
Acenaphthylene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		<0.1	<0.5		<0.1		
Acenaphthene Fluorene	mg/kg mg/kg	0.1 0.1	<0.1 <0.1	<0.5 <0.5		<0.1 <0.1			<0.1 <0.1	<0.5 <0.5		<0.1 <0.1	<0.5 <0.5		<0.1 <0.1		
Phenanthrene		0.1		<0.5						<0.5			<0.5				
	mg/kg		<0.1			<0.1			<0.1			<0.1			<0.1		
Anthracene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	< 0.5		<0.1	<0.5		<0.1		
Fluoranthene	mg/kg	0.1	<0.1	<0.5		0.1			0.1	< 0.5		0.4	<0.5		0.1		
Pyrene	mg/kg	0.1	<0.1	<0.5		0.1			0.1	< 0.5		0.4	<0.5		0.1		
Benz(a)anthracene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	< 0.5		0.2	<0.5		<0.1		
Chrysene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		0.3	<0.5		<0.1		
Benzo(b&k)fluoranthene	mg/kg	0.2	<0.2	<1		<0.2			<0.2	<1		0.4	<0.5		<0.2		
Benzo(a)pyrene	mg/kg	0.05	<0.05	<0.5		<0.05			<0.05	<0.5		0.22	<0.5		<0.05		
Indeno(1.2.3.cd)pyrene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		0.1	<0.5		<0.1		
Dibenz(a.h)anthracene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		<0.1	<0.5		<0.1		
Benzo(g.h.i)perylene	mg/kg	0.1	<0.1	<0.5		<0.1			<0.1	<0.5		0.1	<0.5		<0.1		
TOTAL PAHs	mg/kg	0.1	<0.1	<1.0		0.2			0.2	<1.0		2.3	<0.5		0.2		
BTEX Benzene	mg/kg	0.2	<0.2	<0.1		<0.2			<0.2	<0.5		<0.2	<0.5		<0.2		
Toluene		0.2								<0.5 <0.5			<0.5 <0.5				
	mg/kg		<0.5	<0.1		< 0.5	-		<0.5			< 0.5			< 0.5		
Ethylbenzene	mg/kg	0.5	<1	<0.1		<1			<1	<0.5		<1	<0.5		<1		
meta- & para-Xylene	mg/kg	0.5	<2	<2		<2			<2	<1		<2	<1		<2		
ortho-Xylene	mg/kg	0.5	<1	<1		<1			<1	<0.5		<1	<0.5		<1		
Total Petroleum Hydrocar	1	10											(A. 1				1
C6 - C9 Fraction	mg/kg	10	<25	<10		<25			<25	<10		<25	<10		<25	-	
C10 - C14 Fraction	mg/kg	50	<50	<50		<50			<50	<50		<50	<50		<50		
C15 - C28 Fraction	mg/kg	100	<100	<100		<100			<100	<100		<100	<100		<100		
C29 - C36 Fraction	mg/kg	100	<100	<100		<100			<100	<100		<100	<100		<100		

Values in Bold Indicate: RPD > 50 % When average concentration is > 10 x LOR

RPD > 75 % When average concentration is 5 to 10 x LOR

RPD > 100 % When average concentration is  $< 5 \times LOR$ 

#### SOIL - Trip Blank Results

Laboratory		Envirolab 102886	Envirolab 102886	Envirolab 103178
Date		16-Dec-13	17-Dec-13	6-Jan-14
Sample I	<u>D</u>	Trip blank 1	Trip Blank 2	Trip Blank 2
Analyte	Units			
BTEX				
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
meta- & para-Xylene	mg/kg	<2	<2	<2
ortho-Xylene	mg/kg	<1	<1	<1
<b>Total Petroleum Hydrocar</b>	bons			
C6 - C9 Fraction	mg/kg	<25	<25	<25
C10 - C14 Fraction	mg/kg			
C15 - C28 Fraction	C15 - C28 Fraction mg/kg			
C29 - C36 Fraction	C29 - C36 Fraction mg/kg			

Notes:

--- Not Analysed

# **SOIL - Trip Spike Results**

Laborator	y:	Envirolab 102886	Envirolab 102886	Envirolab 103178	
Date:		16-Dec-13	17-Dec-13	6-Jan-14	
Sample I	D	Spike Desevery	Spike Desevery		
Analyte	Units	Spike Recovery	Spike Recovery	Spike Recovery	
BTEX					
Benzene	mg/kg	63%	103%	111%	
Toluene	mg/kg	63%	101%	111%	
Ethylbenzene	mg/kg	62%	105%	111%	
meta- & para-Xylene	mg/kg	63%	106%	111%	
ortho-Xylene	mg/kg	62%	95%	112%	

#### Notes:

--- Not Analysed

# **SOIL - Rinsate Results**

Laborate	ory:	Rinsate	Rinsate		
Date			17-Dec-17	6-Jan-14	
Sample	e ID		Rinsate 1	R2	
Analyte	Units	LOR	Rinsale	RZ	
Total Metals					
Arsenic	µg/L	0.05	<0.05	<1	
Cadmium	µg/L	0.01	<0.01	<0.1	
Chromium	µg/L	0.01	<0.01	<1	
Copper	µg/L	0.01	<0.01	<1	
Lead	µg/L	0.03	< 0.03	<1	
Nickel	µg/L	0.0005	<0.0005	< 0.05	
Zinc	µg/L	0.02	<0.02	<1	
Mercury	µg/L	0.02	<0.02	<1	
BTEX					
Benzene	µg/L	1	<1	<1	
Toluene	µg/L	1	<1	<1	
Ethylbenzene	µg/L	1	<1	<1	
meta- & para-Xylene	µg/L	2	<2	<2	
ortho-Xylene	µg/L	1	<1	<1	
<b>Total Petroleum Hydroca</b>					
C6 - C9 Fraction	µg/L	50	<10		
C10 - C14 Fraction	µg/L	50	<50		
C15 - C28 Fraction	µg/L	100	<100		
C29 - C36 Fraction	µg/L	100	<100		
<b>Polynuclear Aromatic Hy</b>					
Naphthalene	µg/L	1	<1		
Acenaphthylene	µg/L	1	<1		
Acenaphthene	µg/L	1	<1		
Fluorene	µg/L	1	<1		
Phenanthrene	µg/L	1	<1		
Anthracene	µg/L	1	<1		
Fluoranthene	µg/L	1	<1		
Pyrene	µg/L	1	<1		
Benz(a)anthracene	µg/L	1	<1		
Chrysene	µg/L	1	<1		
Benzo(b)fluoranthene	µg/L	1	<1		
Benzo(k)fluoranthene	µg/L	1	<1		
Benzo(a)pyrene	µg/L	2	<2		
Indeno(1.2.3.cd)pyrene	µg/L	1	<1		
Dibenz(a.h)anthracene	µg/L	1	<1		
Benzo(g.h.i)perylene	µg/L	1	<1		
TOTAL PAHs	µg/L	1			

#### Notes:

--- Not Analysed

Note 1: Results in **BOLD** indicate detection above the Limit of Reporting

	Sa	6/01/2014	6/01/2014		
Sa	mple Ider			RPD	
Analyte	Units	LOR	SM060114-101	SM060114-102	
Total Metals			Envirolab	Envirolab	
Arsenic	µg/L	1	1	1	0%
Cadmium	μg/L	0.1	1.3	1.3	0%
Chromium	µg/L	1	1	<1	
Copper	μg/L	1	1	1	0%
Lead	μg/L	1	<1	<1	
Mercury	μg/L	0.05	<0.05	<0.05	
Nickel	μg/L	1	75	74	1%
Zinc	μg/L	1	150	150	0%
Polycyclic Aromatic Hydroc					
Naphthalene	µg/L	1	<1	<1	
Acenaphthylene	µg/L	1	<1	<1	
Acenaphthene	µg/L	1	<1	<1	
Fluorene	µg/L	1	<1	<1	
Phenanthrene	µg/L	1	<1	<1	
Anthracene	µg/L	1	<1	<1	
Fluoranthene	µg/L	1	<1	<1	
Pyrene	µg/L	1	<1	<1	
Benz(a)anthracene	µg/L	1	<1	<1	
Chrysene	µg/L	1	<1	<1	
Benzo(b&k)fluoranthene	µg/L	1	<1	<1	
Benzo(a)pyrene	µg/L	2	<2	<2	
Indeno(1.2.3.cd)pyrene	µg/L	1	<1	<1	
Dibenz(a.h)anthracene	µg/L	1	<1	<1	
Benzo(g.h.i)perylene	µg/L	1	<1	<1	
TOTAL PAHs	µg/L	1			
BTEX	1.m/l	1	-1		
Benzene Toluene	µg/L	1 1	<1 <1	<1 <1	
Ethylbenzene	µg/L	1	<1	<1	
meta- & para-Xylene	μg/L μg/L	2	<1 <2	<1 <2	
ortho-Xylene	μg/L μg/L	2 1	<2 <1	<2 <1	
Total Petroleum Hydrocarb		1	~1	>1	
C6 - C9 Fraction	µg/L	10	<10	<10	
C10 - C14 Fraction	µg/L µg/L	50	<50	<50	
C15 - C28 Fraction	µg/L µg/L	100	<100	<100	
C29 - C36 Fraction	µg/L	100	<100	<100	

## WATER - Blind Replicate Results

Values in Bold Indicate: RPD > 50 % When average concentration is > 10 x LOR RPD > 75 % When average concentration is 5 to 10 x LOR RPD > 100 % When average concentration is  $< 5 \times LOR$ 

# WATER - Trip Blank Results

Laboratory	Envirolab 103178	
Date	6-Jan-14	
Sample I	D	Trip Blank
Analyte	Units	
BTEX		
Benzene	μg/L	<1
Toluene	μg/L	<1
Ethylbenzene	μg/L	<1
meta- & para-Xylene	μg/L	<2
ortho-Xylene	μg/L	<1
Total Petroleum Hydrocar	bons	
C6 - C9 Fraction	μg/L	<10
C10 - C14 Fraction	μg/L	
C15 - C28 Fraction	μg/L	
C29 - C36 Fraction	μg/L	

Notes:

--- Not Analysed

WATER - Trip Spike Resul	ts
--------------------------	----

Laboratory	Laboratory:					
Date	6-Jan					
Sample I	Spike Decovery					
Analyte	Units	Spike Recovery				
BTEX						
Benzene	μg/L	82%				
Toluene	μg/L	<b>9</b> 2%				
Ethylbenzene	μg/L	98%				
meta- & para-Xylene	μg/L	101%				
ortho-Xylene	μg/L	100%				

Notes:

--- Not Analysed



# **APPENDIX J**

**Calibration Certificates** 

#### **PID Calibration Certificate**

Instrument Serial No. PhoCheck Tiger T-105859



## Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comments		
Battery	Charge Condition	1					
2	Fuses	1					
· · · · · · · · · · · · · · · · · · ·	Capacity	1					
	Recharge OK?	√					
Switch/keypad	Operation	×					_
Display	Intensity	✓					
	Operation (segments)	√					
Grill Filter	Condition	√					
	Seal	✓					
Pump	Operation	✓					
	Filter	1					
	Flow	1					
	Valves, Diaphragm	1					
РСВ	Condition	1					
Connectors	Condition	1			21		
Sensor	PID	1	10.6 ev				
Alarms	Beeper	1	Low	High	TWA	STEL	
- uurrie	Settings	1	50ppm	100ppm			
Software	Version	1					
Data logger	Operation	1					
Download	Operation	1					
Other tests:							

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp			NIST	SY21	99.6ppm

	11	
Calibrated by:	inth	Joanna Wong
Calibration date:	16/12/2013	
Next calibration due:	15/01/2014	

Instrument Serial No. PhoCheck Tiger T-105522



# Air-Met Scientific Pty Ltd 1300 137 067

Item	Test	Pass			Comment	te .
Battery	Charge Condition	1			comment	5
	Fuses	1				
	Capacity	1				
	Recharge OK?	1				
Switch/keypad	Operation	1				
Display	Intensity	1				
	Operation (segments)	4				
Grill Filter	Condition	1				
	Seal	1				
Pump	Operation	1				
	Filter	1				
	Flow	1				
	Valves, Diaphragm	1				
PCB	Condition	1				
Connectors	Condition	1				
Sensor	PID	1	10.6 ev			
Alarms	Beeper	1	Low	High	TWA	STEL
	Settings	1	50ppm	100ppm		UTEL
Software	Version	1		L. S. F. F. S.		
Data logger	Operation	1				
Download	Operation	1				
Other tests:						

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

2/02/2014

Sensor	Serial no	Calibration gas and concentration	Certified	Gas bottle No	Instrument Reading
PID Lamp		100ppm Isobutylene	NIST	SY21	100.6ppm
Calibrated by:	AR		Anne Rutlic	lge	
Calibration date		3/01/2014			

Next calibration due:

#### Multi Parameter Water Meter

Instrument Serial No. YSI Quatro Pro Plus 10E101052



Comments Item Test Pass Battery Charge Condition 1 1 Fuses 1 Capacity 1 Operation Switch/keypad 1 Display Intensity 1 Operation (segments) **Grill Filter** Condition 1 1 Seal 1 Condition PCB 1 Condition Connectors 1 Sensor 1. pH 1 2. mV 1 3.Specific conductance 1 4. D.O 1 5. Temp Beeper Alarms Settings Software Version Operation Data logger Operation Download Other tests:

# Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. pH 7.00		pH 7.00		KL1376	pH 7.00
2. pH 10.00		pH 10.00		JH1569	pH 9.89
3. pH 4.00		pH 4.00		LB2154	pH 4.00
4. mV		229.0mV		KD2048/KG1100	229.9mV
5. EC		2.76mS		KJ1595	2.78mS
6. D.O		0ppm		187	0.00ppm
7. Temp		22.7°C		MultiTherm	22.5°C

Calibrated by:

Anne Rutlidge

Calibration date: 3/01/2014

AD

Next calibration due:

2/02/2014



# **APPENDIX K**

Field Data Sheets



.

# GROUNDWATER SAMPLING FIELD DATA

WELL ID:

BH2

			PROJECT INFO	ORMATIC	N			
ROJECT NA	ME: Sta	age 1 and 2 ESA	PRO	JECT NUMB	ER: E1	3017BEL		
OCATION / S	SITE: 67	7-687 Canterbury Rd	Belmore CLIE	NT:	Cit	y Property Alli	ance	
			WELL DE	TAILS				_
VELL DIAME	TER (mm):	50 WELL	SCREEN INTERVAL (m	n): 3.8-7.8	CASIN	IG STICK UP	(+) / DOWN (-)	m: -0.1
CONDITION (Comments Be		nage: YES / NO	Well Locked: YES Cap on PVC: YES		Water Arou Water Betv		Satic/ Monument:	YES / NO
			WELL MEASU	IREMENT	rs		_	_
STATIC WAT	ER LEVEL (S	WL):	3.4	7	m BTOC	or mBGL	m BTOM	
FREE PRODU	JCT:	Mes or (No)	ז	hickness (m)	):		_	
TOTAL DEPT	H OF WELL (	TD):	7.8.		m BTOC	or m BGL	or m BTOM	
		PU	RGING DETAILS	OBSER	VATIONS			
METH	IOD:	Bladder Pump P	eristaltic High Volume	Pump (Fo	oot Valve	Bailer C	other:	
DATE:	6-1-11	1	WATER LEVEL AFTER PL	JRGE:	Pr	24		BGL/mBTOM
MAX. DRAW	-		INTAKE DEI	PTH:			mBTOC / m	BGL/mBTOM
TIME	CUMUL. VOLUME PURGED	PURGE RATE	DO (mg/L)	E.C. mS/cm or µS/cm	pH (standard units)	Redox (mV)	TEMP. (°C)	TURB, (NTUs)
	(Litres) Equilibrium Re	quirements	± 10 %	±3%	± 0.05	± 10	± 0.2	
	A 1							
	2151	+)						
		1						
			RECHARGE OF	SERVAT	IONS			
	Slow /8	0% recharge > 2 Hou				0% recharge	< 2 Hours)	
- (-	Slow (o	10 % recharge > 2 mot	SAMPLING	DETAIL	S			
					Foot Valve	Bailer	Other:	
MET	HOD:	Didden i ship	eristaltic High Volum	1	1		mBTOC / m	BGL / mBTOM
DATE & TIME		6-1-14		WATER L		CONTE		107
SAMPLE ID:		SMOGOIL	- 104-	Blind Rep Split Dupl		Ster		
FINAL WATE		DO (mg/L)	E.C. mS/cm or aS/cm	pH (standard ur	1-1 )	edox mV)	TEMP. (°C)	TURB, (NTUs)
READINGS:		2-78	18443	0	2 6	5	21-5	
DESCRIPTIO	N:	Colour Pale P	S Turbidity:	Yes	Odour	-	Other	
	UME CALCULA	One Well Volu Three Well Volu	ter Column (m) = TD (m) – S imes (L) = Length of Water ( plumes (L) =	Column x 2 (50				
NOTES: m E	BTOC = metres I	Below Top of Casing /	m BGS = metres Below Gro	und Surface / I	m BTOM = metre	sa Delow Top of	Monument	
							$\bigcirc$	22

Revision Date: 30 August 2010 Rev. 2



# GROUNDWATER SAMPLING FIELD DATA

WELL ID:

BH3

ROJECT NA	ME									
	NVIC.	Stage 1 and 2 ESA		PR	DJECT NUM	IBER:	E130	017BEL		
OCATION / S	SITE: (	677-687 Canterbury	Rd Belmore	CLI	ENT:		City	Property Al	liance	
			V	VELL DI	TAILS					
VELL DIAME	TER (mm):	50 WE	LL SCREEN IN	TERVAL (	m): 2.6-6.6		CASING	STICK UP	? (+) / DOWN (-	) m: -0.1
CONDITION (Comments Bel	taux).	image: YES / Mental YES / Menta		cked: YES	7 NO		iter Around		Gatic/ Monument	YES / NO
			WELL	MEAS	JREMEN	TS				
TATIC WATE	ER LEVEL (S	SWL): 3	200	3.8	1	m BT	oc dr	m BGL	or m BTOM	
REE PRODU	JCT:	be or No	~~/		Thickness (m	):				
OTAL DEPTH	H OF WELL	(TD):	6-6			m BT	OC or	m BGL	or m BTOM	
		PI	JRGING DE	TAILS	/ OBSER	VATIO	ONS			
METHO	OD:	Bladder Pump		ligh Volume		oot Valve		ler C	Other:	,
DATE:	Glil	14	WATER LEVE	L AFTER PL	IRGE:		DZY		mBTOC / m	BGL/mBTOM
MAX. DRAWE				INTAKE DEP	TH:		- 1		mBTOC / m	BGL/mBTOM
TIME	CUMUL. VOLUME PURGED	PURGE	DC (mg/		E.C. mS/cm or µS/cm	pH (stand unit	iard	Redox (mV)	TEMP (°C)	TURB, (NTUs)
	(Litres) Equilibrium Re	equirements	± 10	%	±3%	± 0.0		± 10	± 0.2	~
	1.0	$\sum$								-
0	\$ 101									
			/							
		/								
		/	_							
			RECHAR	RGE OB	SERVAT	IONS				
(	Slow (8	0% recharge > 2 Ho	ours)			F	ast (80%	recharge <	2 Hours)	je-
			SAN	IPLING	DETAILS	S				
METHO	OD:	Bladder Pump	Peristaltic I	High Volume	Pump	Foot Valv	e (	Bailer	Other:	
ATE & TIME:		6/1/14			WATER LE	EVEL (m)			mBTOC / mB	BGL / mBTOM
				of	Blind Repli	cate ID:				
AMPLE ID:		SM 060	2114-	00	Split Duplic	cate ID:				
INAL WATER	QUALITY	(-8/(mg/L) .	E.C. mS/cm or us	S/cm	(standard un	H5,37	Redox (mV)		TEMP. (°C)	TURB, (NTUs)
READINGS		200	1370	9	1	•	60	3	21.7	
ESCRIPTION		Colour Pele		urbidity:	slight	0	dour:		Other	
ORGE VOLUM				of Water Co	lumn x 2 (50m 				onument	

DII4	BH	LL ID:	WEI			m.au		NE COVE NSW 02 8964 6045 info@geoenvi
			ATION	DJECT INFO	P		mitericaliconnisc	ww.geoenviror
	BEL	E13017BEL	NUMBER:	PROJ	2 ESA	Stage 1 a	ME: St	ROJECT NAM
	operty Alliance	City Proper		CLIEN	terbury Rd Belm			
			LS	WELL DET		511-001 0	SITE. OF	DCATION / S
OWN (-) m: -0.1	TICK UP (+) / DOWN	CASING STICH	0-6.0	N INTERVAL (m)	WELL SCR	50		
YES / NO	Vell:	Vater Around Well:		ell Locked: YES		50		ELL DIAME
onument: YES / NO	PVC and Gatic/ Monum	Vater Between PVC	w w	ap on PVC: YES	YES / NO YES / NO	amage:		CONDITION Comments Bel
			MENTS	ELL MEASU		ell ID VISIO	VVE	Comments De
TOM	m BGL or m BTOM	TOC or mB	mB	7	3-	SWI ):	ER LEVEL (S	
			ess (m):	/ Ti	6	Der la		
BTOM	m BGL or m BTO	TOC of mB	1		No	18		REE PRODU
				DETAILO		_ (TD):	TH OF WELL	OTAL DEPT
	Other:			DETAILS /	PURGI	-		
STOC / mBGL / mBTC				High Volume P		Bladde	HOD:	METH
BTOC / mBGL / mBT	•	PRY.		LEVEL AFTER PU	WAT	14	6/1/1	DATE:
EMP. TUR	Redox TEMP	pH Rec		DO		-	VDOWN (m)	MAX. DRAW
(°C) (NTU	(mV) (°C)	andord			PURGE		VOLUME PURGED	TIME
± 0.2	± 10 ± 0.2	± 0.05 ± '	% ±	± 10 %		Requireme	(Litres) Equilibrium R	
			-			N	21-	
					•	9	215	- (-
					/			
		19	DVATION	HARGE OB				
ours)	recharge < 2 Hours)		NATION	HARGE OF	5			
		1 001 (0010	TAUS	SAMPLING	rge > 2 Hours)	(80% rec	Slow (	(
Other:	Bailer) Oth	Valve Baile						
nBTOC / mBGL / mB1			np · · · ·	High Volume	Pump Perista	Blade	THOD:	MET
						_	E:	DATE & TIME
			Blind Replicate I	-107	060114	SV		SAMPLE ID:
	(00)	Redox (mV)	pH	E.C.	DO	-		
		EL	andard units)	12485		-		FINAL WATE READINGS:
	2 21-2				12			
) (NTUs		Odour:		Turbidity:		Cold	ONI	DESCRIPTIC

GEE PERSONNEL: S. McCormack

na	in-	0	'n١	/11	0	nr	10	e
JE	Z	G	4	Ν	E	E	R	1
LANE P: 02 E: in	COVI 8964 60@ge	E NSV 6045 loenvi	/ 201 i	nenta	l.com	.au		

# GROUNDWATER SAMPLING FIELD DATA

WELL ID:

**BH10** 

OJECT NAME:	Stag	Contraction of the							
CATION / SITE		ge 1 and 2 ESA		PROJECT NU	MBER:	E130	17BEL		
	: 677	-687 Canterbury Ro	I Belmore	CLIENT:		City I	Property All	iance	
			WELL	DETAILS					
ELL DIAMETER	R (mm): 5	0 WELL	SCREEN INTERV	/AL (m): 3.0-6.0	)	CASING	STICK UP	(+) / DOWN (-)	m: -0.1
	Dama	de: YES / NO	Well Locked:	YES / NO	W	ater Around	Well:		YES / NO
CONDITION Comments Below)		D Visible: YES / NO	Cap on PVC:	YES / NO	W	ater Betwee	en PVC and	Gatic/ Monument:	YES / NO
			WELL ME	ASUREME	NTS				
TATIC WATER I	LEVEL (SW	/L): 3	.37		m B	roc or	m BGL	or m BTOM	
REE PRODUCT	Te - *	No I No		Thickness	(m):	~			
OTAL DEPTH O	F WELL (T	-	6. M		mB	TOC of	m BGL	or m BTOM	
			RGING DETA	ILS / OBSE	RVAT	ONS			_
METHOD:		Bladder Pump F	eristaltic High V	olume Pump	Foot Valv	Ва	iler (	Other:	
	1	4	WATER LEVEL AFT	TER PURGE:	12	PRY.			GL/mBTOM
MAX. DRAWDON		4	INTA	KE DEPTH:				mBTOC / ml	BGL/mBTOM
	CUMUL. /OLUME PURGED	PURGE	DO (mg/L)	E.C. mS/cm <u>or</u> µS/cm	(sta	pH indard nits)	Redox (mV)	TEMP. ( [°] C)	TURB, (NTUs)
	(Litres) uilibrium Reg		± 10 %	± 3 %	±	0.05	± 10	± 0.2	
1	10)							-	
(n	150	-/							
					_				
			RECHARG	E OBSERV	ATION	S			
	Slow (80	)% recharge > 2 Ho	urs)			Fast (80	% recharge	< 2 Hours)	-
				LING DETA	ILS				
METHO	D'	Bladder Pump	Peristaltic High	Volume Pump	Foot V	/alve	Bailer	Other:	
DATE & TIME:		6/1/1	F	WATE	R LEVEL (	m)		mBTOC / m	BGL / mBTOM
		01.11			Replicate II	D:			
SAMPLE ID:		5m06			Duplicate ID			TEMP.	TURB.
FINAL WATER Q	UALITY	DO (mg/L)	E.C. mS/cm or µS/cr		rd units)	Red (m)	V)	(°C)	(NTUs)
READINGS:		2.19	6520	0 6	-85		3	2-2-7 Other	
DESCRIPTION:		Colour	Turbio			Odour:		Ouler	
PURGE VOLUME		One Well Vo	ater Column (m) = TD lumes (L) = Length of 'olumes (L) =	Water Column x 2					-

GEE PERSONNEL: S. McCormack

SIGNATURE:



-

# GROUNDWATER SAMPLING FIELD DATA

WELL ID:

**BH14** 

		P	ROJECT INF	ORMATIO	N			
ROJECT NAME:	Sta	age 1 and 2 ESA	PRO	JECT NUMBE	R: E13	017BEL		
OCATION / SITE	67	7-687 Canterbury Rd Belm	nore CLIE	ENT:	City	Property Alli	ance	
			WELL DE	TAILS				
VELL DIAMETER	R (mm):	50 WELL SCF	REEN INTERVAL (n	n): 3.0-6.0	CASIN	G STICK UP	(+) / DOWN (-) r	n: -0.1
CONDITION (Comments Below)	Dam	age: ¥ES / NO ID Visible: ¥ES / NO		5 / NO 5 / NO	Water Aroun		Satic/ Monument:	YES / NO YES / NO
			WELL MEASU	UREMENT	S			
TATIC WATER	LEVEL (SV	NL): 3-"	93	(	m.BTOC	m BGL	m BTOM	
REE PRODUCT		De or No		Thickness (m):				
TOTAL DEPTH C			m		BTOC	m BGL	or m BTOM	
IOTAL DEPTITE			NG DETAILS	/ OBSERV	ATIONS	e		
				/	0	ailer C	ther:	
METHOD	. 1 .	Bladder Pump Peristal	TER LEVEL AFTER P	C C			mBTOC / mB	GL/mBTOM
DATE:	611	14 004	INTAKE DE				mBTOC / mB	GL/mBTOM
	CUMUL. /OLUME PURGED	PURGE	DO (mg/L)	E.C. mS/cm <u>or</u> μS/cm	pH (standard units)	Redox (mV)	TEMP. ( ^o C)	TURB, (NTUs)
	(Litres) juilibrium Re		± 10 %	± 3 %	± 0.05	± 10	± 0.2	
(1	2101							
		P	ECHARGE O	BSERVAT	IONS			
			LONAROL			0% recharge	< 2 Hours)	
	Slow (8	30% recharge > 2 Hours)	SAMPLIN	GDETAILS				
					Foot Valve (	Bailer	Other:	
METHO	D:	Bladder Pump Perista	atic High Volu	WATER LE			mBTOC / m	BGL / mBTON
DATE & TIME:		6/114		Blind Repli		_	_	
SAMPLE ID:		SM06011	4-105	Split Duplic		-	_	
FINAL WATER C READINGS:	UALITY	DO (mg/L) 7 - 8 0	E.C. mS/cm <u>or</u> μS/cm 13150	pH (standard un 6 - (	its) (I	edox mV) 63	(°C) Z3.0	TURB, (NTUS)
DESCRIPTION:		Colour Pale B-	Turbidity:	Slight	Odour:	-	Other	
PURGE VOLUM		ATOR: Length of Water Co One Well Volumes Three Well Volume Below Top of Casing / m BC		Column x 2 (50n				-
NULES. III DIU	CONTRACTOR OF THE OWNER							

Revision Date: 30 August 2010 Rev 2

-	0	0	m	/ir	0	nr	n	or	nt:	1		-
<b>J</b> E	N	G	i	Ν	E	E	R	-	Ν	G		·
82 BR				16				1	1	1	1	

# GROUNDWATER SAMPLING FIELD DATA

ww.geoenvironment				ODMATIC	N			
	-	F	ROJECT INF					
ROJECT NAME:	Stage 1	and 2 ESA	PR	OJECT NUMB		17BEL		
CATION / SITE:	677-687	Canterbury Rd Belr	nore CL	IENT:	City	Property Allia	nce	_
			WELL D	ETAILS				
ELL DIAMETER (	mm): 50	WELL SCR	REEN INTERVAL (	(m): 2.9-6.9	CASING	STICK UP (	+) / DOWN (-) n	n: -0.1
CONDITION	Damage:	YES / NO	Well Locked: YE	S / NO	Water Aroun			YES / NO
Comments Below):	Well ID Vis	sible: YES / NO	Cap on PVC: YE	S / NO	Water Betwe	en PVC and G	atic/ Monument:	YES / NO
			WELL MEAS	UREMENT	rs		-	
TATIC WATER L	EVEL (SWL):	3.87	Z		m BTOC OI	m-BGL of	- m BTOM	
REE PRODUCT:		or No		Thickness (m)	1			
OTAL DEPTH OF		1	m.		BTOC O	m BGL o	m BTOM	
of the best states		PURG	NG DETAILS	OBSER	VATIONS			
METHOD:	Blad	der Pump Perista		8		ailer Ot	her:	
DATE:	1114		TER LEVEL AFTER	PURGE:	DRU	1.	mBTOC / mB	
MAX. DRAWDOW	1 111		INTAKE D	EPTH:			mBTOC / mB	GL/mBTON
TIME	JMUL. LUME RGED	PURGE RATE	DO (mg/L)	E.C. mS/cm <u>or</u> μS/cm	pH (standard units)	Redox (mV)	TEMP. (°C)	TURB, (NTUs)
(I Equi	itres) librium Requirer		± 10 %	± 3 %	± 0.05	± 10	± 0.2	
Â	151)							
		R	ECHARGE C	BSERVAT	IONS			
/	Slow (80% r	echarge > 2 Hours)	$\rightarrow$		Fast (80	)% recharge <	< 2 Hours)	
(			SAMPLIN	G DETAIL	S			
METHOD	PI	adder Pump Perist	altic High Volu	ume Pump	Foot Valve	Bailer	Other.	
METHOD: DATE & TIME:	Die		f	WATER L	EVEL (m)		mBTOC / m	BGL / mBTC
DATE & TIME.		0[1]	1	Blind Rep	licate ID:	SMO	60114	-10
SAMPLE ID:		Sm660		Split Dupi		dox	TEMP.	TURB,
FINAL WATER QU READINGS:			E.C. mS/cm <u>or</u> μS/cm 7510	pH (standard u		dox IV) 64	21-4	(NTUs)
		2-40 olour Sa. sut	Brown Turbidity:	Ten	Odour:		Other	
DESCRIPTION: PURGE VOLUME			I will a TD (m)	- SWL (m) =	Dia 1 7 0 /-	100mm Dia ) -		
		One Well Volumes Three Well Volumes	s (L) = Length of Wate es (L) =	er Column x 2 (50				5
NOTES: MBIOC	- meaes below	, op of outing 1 into						



# PID HEADSPACE TEST DATA SHEET

PROJECT NAME:	Stage 2 ESA		PRO	DJECT NUMBER: E	CAM	E13017	BEC
LOCATION / SITE:	Belmore NSW		CLIENT: WM Ritchie P	roperties Pty Ltd & Belmor	e 677 P/L	DATE: 16-12-13	
		. E	QUIPMENT AN	ID METHODOLC	OGY		
EQUIPMENT: Proch	neck Tiger	L	AMP VOLTAGE (eV):	10.6	SUPPLIE	R: Air-Met	
			CALIBRAT	ION DETAILS			
DATE: 16-12-13		0	CALIBRATION SPAN G	AS: Isobutylene	SPAN GA	AS VALUE (ppm): 97.0	
			RE	SULTS			
SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)	SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)
SM161213-01	BH1		0	SM161213-36	BH5		0.0
SM161213-02	BH1		0.1	SM161213-37	BH5		0.0
SM161213-04	BH2		0.1	SM161213-38	BH5		0.1
SM161213-05	BH2		0.2	SM161213-39	BH6		0.1
SM161213-06	BH2		0.0	SM161213-40	BH6		0.3
SM161213-07	BH2		0.0	SM161213-41	BH6		0.0
SM161213-08	BH2		0.0	SM161213-42	BH6		0
SM161213-09	BH2		QD	SM161213-43	BH6		0
SM161213-10	BH3	•	0.0	SM161213-44	BH7		0
SM161213-11	BH3		0.1	SM161213-45	BH7		О
SM161213-12	BH3		0.0	SM161213-46	BH7		0
SM161213-13	· BH3		0.0	SM161213-47	BH7	open	0.03 #
SM161213-14	BH3		0.1	SM161213-49	BH7		0.0
SM161213-15	BH3		0-1	SM161213-16	BH8		0.0
SM161213-22	BH4		0-1	SM161213-18	BH8		0.0
SM161213-23	BH4		0.0	SM161213-19	BH8		0.0
SM161213-24	BH4		0.0	SM161213-20	BH8		0.0
SM161213-25	BH4		0.0	SM161213-21	BH8		0.0
SM161213-26	BH4		0.0	SM161213-27	BH9		0.0
SM161213-33	BH5		-	SM161213-28	BH9		0.0
SM161213-34	BH5		0.0	SM161213-29	BH9		0.0
SM161213-35	BH5		0.0	SM161213-30	BH9		0.0

Notes: # = Bag open before testing.



275A Stoney Creek Road KINGSGROVE NSW 2208 Ph: + 61 (0) 2 9592 0218 Fax: + 61 (0) 2 9591 9140 tal.com.

# PID HEADSPACE TEST DATA SHEET

PROJECT NAME: S	tage 2 ESA		PROJE	ECT NUMBER: E1300	TCAM E	13017B	EC
LOCATION / SITE: E	Belmore NSW		CLIENT: WM Ritchie Prop	perties Pty Ltd & Belmo	ore 677 P/L	DATE: 16-12-13	
	72	EC	QUIPMENT AND	METHODOL	OGY		
EQUIPMENT: Proche	eck Tiger	U	AMP VOLTAGE (eV): 10	SUPPLIER	Air-Met		
			CALIBRATI	ON DETAILS			
DATE: 16-12-13		с	ALIBRATION SPAN GAS	: Isobutylene	SPAN GAS	VALUE (ppm): 97.0	
			RES	ULTS			
SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)	SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)
SM161213-31	, BH9		0.1				
SM161213-32	BH9		0.1				
SM161213-50	BH10						
SM161213-51	BH10		0.2				
SM161213-52	BH10		0.2				
SM161213-53	BH10	•	0.2				
SM161213-54	BH10		6.(				
SM161213-55	BH10		0-2				
SM161213-56	· BH10		0.2				
			_				
		•	_				

Notes: # = Bag open before testing



# PID HEADSPACE TEST DATA SHEET

PROJECT NAME: S	tage 2 ESA		PROJ	ECT NUMBER: -E13001	EAM EI	3017 BEL	_	
LOCATION / SITE: E	Belmore NSW	C	LIENT: WM Ritchie Pro	perties Pty Ltd & Belmon	e 677 P/L	DATE: 17-12-13		
		EQ	UIPMENT AND	METHODOLO	GY			
EQUIPMENT: Proche	eck Tiger	LA	LAMP VOLTAGE (eV): 10.6 SUPPLIER: Air-Met					
			CALIBRATI	ON DETAILS				
DATE:	/	CA	LIBRATION SPAN GAS	S: Isobutylene	SPAN GAS	S VALUE (ppm): 97.0		
<u>v</u>			RES	ULTS				
SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)	SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)	
SM171213-81	BH11		6.0	SM171213-84	BH18		0.0	
SM171213-82	BH11		0.0	SM171213-85	BH18		0.0	
SM171213-60	BH12		0.0	SM171213-86	BH18		0.0	
SM171213-61	, BH12		ľ	SM171213-87	BH19		0.0	
SM171213-62	BH12			SM171213-89	BH19		0.0	
SM171213-63	BH12			SM171213-90	BH19		0.0	
SM171213-64	BH13		-	SM171213-91	BH19		0	
SM171213-66	BH13		0.1	SM171213-92	BH20		0	
SM171213-71	BH13		0.1	SM171213-94	BH20		0	
SM171213-67	BH14		0.3	SM171213-95	BH20		0	
SM171213-68	· BH14		0.4	SM171213-96	BH20		0	
SM171213-69	BH14		0.1	SM171213-97	BH20		0	
SM171213-70	BH14		0.0	SM171213-98	BH20		0	
SM171213-74	BH15		0.0	SM171213-99	BH20		0	
SM171213-75	BH15		0.0					
SM171213-76	BH15		0.0					
SM171213-77	BH15		0.0					
SM171213-72	BH16		-					
SM171213-78	BH17		0.0					
SM171213-79	BH17		00					
SM171213-80	BH17		0.0					
SM171213-83	BH18		0.0					

Notes: # = Bag open before testing



# PID HEADSPACE TEST DATA SHEET

PROJECT NAME: S	Stage 2 ESA		PRC	JECT NUMBER: ELGO	ICAM E	BOITBE	L .
LOCATION / SITE:	Belmore NSW		CLIENT: WM Ritchie P	roperties Pty Ltd & Belmo	ore 677 P/L D	ATE 6	-1-14.
		E	QUIPMENT AN	D METHODOL	DGY		
EQUIPMENT: Proch	ieck Tiger	L	AMP VOLTAGE (eV):	10.6	SUPPLIER:	Air-Met	
			CALIBRAT	ION DETAILS			
DATE: 0-44-18-	6-1-14		CALIBRATION SPAN GA	S: Isobutylene	SPAN GAS	VALUE (ppm): 97.0	
			RE	SULTS			
SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)	SAMPLE ID	LOCATION	DEPTH (m)	PID VALUE (ppm)
SM060114-80	BH21		0.0				
SM060114-81	BH22		0-0				
SM060114-83	BH23		0.0				
SM060114-84	BH23		0.0				
SM060114-86	BH23		0.0				
SM060114-87	BH24		1			6	
SM060114-89	BH24						
SM060114-90	BH25						
SM060114-92	BH25						
SM060114-93	BH26						
SM060114-94	BH26						
SM060114-95	BH26						
SM060114-96	BH27						
SM060114-98	BH27						
SM060114-99	BH28						
SM060114-100	BH28		0				

Notes: # = Bag open before testing



# **APPENDIX L**

Laboratory Reports and Certificates

E13017BEL-R01F



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### CERTIFICATE OF ANALYSIS

102886

Client: Geo-Environmental Engineering 82 Bridge St

Lane Cove NSW 2066

Attention: Steve McCormack

#### Sample log in details:

Your Reference:	E13017BEL		
No. of samples:	96 Soils, 2 Wa	ters	
Date samples received / completed instructions received	19/12/2013	/	19/12/2013
This report replaces the previous one due to changes in sam	ple #94		

#### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

# Report Details: Date results requested by: / Issue Date: 8/01/14 / 4/03/14 Date of Preliminary Report: Not issued NATA accreditation number 2901. This document shall not be reproduced except in full. Accredited for compliance with ISO/IEC 17025. Tests not covered by NATA are denoted with *.

#### **Results Approved By:**

Jacinta Hurst

Jacinta/Hurst Laboratory Manager



#### Client Reference: E13017BEL

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	102886-4 SM161213-04 16/12/2013 Soil	102886-10 SM161213-10 16/12/2013 Soil	102886-12 SM161213-12 16/12/2013 Soil	102886-13 SM161213-13 16/12/2013 Soil	102886-16 SM161213-16 16/12/2013 Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	101	96	89	97	92

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	102886-17	102886-20	102886-22	102886-23	102886-25
Your Reference		SM161213-17	SM161213-20	SM161213-22	SM161213-23	SM161213-25
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	93	89	95	89	96

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-27 SM161213-27 16/12/2013 Soil	102886-28 SM161213-28 16/12/2013 Soil	102886-30 SM161213-30 16/12/2013 Soil	102886-34 SM161213-34 16/12/2013 Soil	102886-35 SM161213-35 16/12/2013 Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C 10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	97	103	94	101	82
		1			1	1
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	102886-39	102886-41	102886-42	102886-45	102886-47
Your Reference		SM161213-39	SM161213-41	SM161213-42	SM161213-45	SM161213-47
Date Sampled		16/12/2013 Soil	16/12/2013 Soil	16/12/2013 Soil	16/12/2013 Soil	16/12/2013 Soil
Type of sample						
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
<b>TRHC6 - C</b> 10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	84	93	96	98	104

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-48 SM161213-49 16/12/2013 Soil	102886-49 SM161213-50 16/12/2013 Soil	102886-50 SM161213-51 16/12/2013 Soil	102886-55 Trip Blank 1 16/12/2013 Soil	102886-56 Trip Spike 2 16/12/2013 Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	[NA]
<b>TRHC</b> 6 - C 10	mg/kg	<25	<25	<25	<25	[NA]
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	63%
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	63%
Ethylbenzene	mg/kg	<1	<1	<1	<1	62%
m+p-xylene	mg/kg	<2	<2	<2	<2	63%
o-Xylene	mg/kg	<1	<1	<1	<1	62%
naphthalene	mg/kg	<1	<1	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	100	98	102	91	89
		1	1			
vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	102886-59	102886-61	102886-62	102886-65	102886-69
Your Reference Date Sampled		SM171213-62 17/12/2013	SM171213-64 17/12/2013	SM171213-65 17/12/2013	SM171213-67 17/12/2013	SM171213-72 17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	84	80	76	86	88

vTRH(C6-C10)/BTEXNinSoil Our Reference: Your Reference DateSampled Type of sample	UNITS	102886-71 SM171213-75 17/12/2013 Soil	102886-77 SM171213-81 17/12/2013 Soil	102886-80 SM171213-84 17/12/2013 Soil	102886-83 SM171213-87 17/12/2013 Soil	102886-87 SM171213-92 17/12/2013 Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C 10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	88	89	85	85	95

vTRH(C6-C10)/BTEXN in Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	102886-88 SM171213-93 17/12/2013 Soil	102886-95 Trip blank 2 17/12/2013 Soil	102886-96 Trip spike 2 17/12/2013 Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013
TRHC6 - C9	mg/kg	<25	<25	[NA]
TRHC6 - C10	mg/kg	<25	<25	[NA]
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	103%
Toluene	mg/kg	<0.5	<0.5	101%
Ethylbenzene	mg/kg	<1	<1	105%
m+p-xylene	mg/kg	<2	<2	106%
o-Xylene	mg/kg	<1	<1	95%
naphthalene	mg/kg	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	95	96	103

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-4	102886-10	102886-12	102886-13	102886-16
Your Reference		SM161213-04	SM161213-10	SM161213-12	SM161213-13	SM161213-16
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	92	92	90	88	91

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-17	102886-20	102886-22	102886-23	102886-25
Your Reference		SM161213-17	SM161213-20	SM161213-22	SM161213-23	SM161213-25
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	91	89	93	91	89

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-27	102886-28	102886-30	102886-34	102886-35
Your Reference		SM161213-27	SM161213-28	SM161213-30	SM161213-34	SM161213-35
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	89	91	92	94	97

Your Reference          SM161213-39         SM161213-41         SM161213-42         SM1         SM1           Date Sampled          16/12/2013         Soil         16/12/2013         16/12/2013         16/12/2013         16/12/2013         16/12/2013         16/12/2013         16/12/2013         Soil         16/12/2013         16/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013 </th <th>svTRH (C10-C40) in Soil</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	svTRH (C10-C40) in Soil						
Date Sampled Type of sample	Our Reference:	UNITS	102886-39	102886-41	102886-42	102886-45	102886-47
Type of sample         Soil	Your Reference		SM161213-39	SM161213-41	SM161213-42	SM161213-45	SM161213-47
Date extracted         -         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         20/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013         21/12/2013 </td <td>Date Sampled</td> <td></td> <td>16/12/2013</td> <td>16/12/2013</td> <td>16/12/2013</td> <td>16/12/2013</td> <td>16/12/2013</td>	Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Type of sample		Soil	Soil	Soil	Soil	Soil
TRHC 10 - C 14       mg/kg       <50       <50       <50         TRHC 15 - C 28       mg/kg       <100	Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
TRHC 15 - C28     mg/kg     <100     <100       TRHC 29 - C36     mg/kg     <100	Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC20 - C36     mg/kg     <100     <100       TRH>C10-C16     mg/kg     <50	TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRH>C10-C16     mg/kg     <50     <50     <50       TRH>C10 - C16 less Naphthalene (F2)     mg/kg     <50	TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRH>C10 - C16 less Naphthalene     mg/kg     <50     <50     <50       TRH>C16-C34     mg/kg     <100	TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
(F2)     TRH>C16-C34     mg/kg     <100	TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
	•	mg/kg	<50	<50	<50	<50	<50
TRH>C34-C40 mg/kg <100 <100 <100	TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
	TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl % 96 95 94	Surrogate o-Terphenyl	%	96	95	94	95	95

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-48	102886-49	102886-50	102886-59	102886-61
Your Reference		SM161213-49	SM161213-50	SM161213-51	SM171213-62	SM171213-64
Date Sampled		16/12/2013	16/12/2013	16/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	98	95	92	94	92

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-62	102886-65	102886-69	102886-71	102886-77
Your Reference		SM171213-65	SM171213-67	SM171213-72	SM171213-75	SM171213-81
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	92	94	84	91

#### Client Reference: E13017BEL

TRU (040.040) : 0.1						
svTRH (C10-C40) in Soil						
Our Reference:	UNITS	102886-80	102886-83	102886-87	102886-88	
Your Reference		SM171213-84	SM171213-87	SM171213-92	SM171213-93	
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	
Type of sample		Soil	Soil	Soil	Soil	
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	
TRHC29 - C36	mg/kg	<100	<100	<100	<100	
TRH>C10-C16	mg/kg	<50	<50	<50	<50	
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	
TRH>C16-C34	mg/kg	<100	<100	<100	<100	
TRH>C34-C40	mg/kg	<100	<100	<100	<100	
Surrogate o-Terphenyl	%	93	89	90	92	
PAHs in Soil						
----------------------------	-------	-------------	-------------	-------------	-------------	-------------
Our Reference:	UNITS	102886-4	102886-5	102886-6	102886-10	102886-16
Your Reference		SM161213-04	SM161213-05	SM161213-06	SM161213-10	SM161213-16
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.3	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.19	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	1.5	NIL(+)VE
Surrogate p-Terphenyl-d14	%	98	99	102	100	99

PAHs in Soil						
Our Reference:	UNITS	102886-17	102886-22	102886-27	102886-47	102886-49
Your Reference		SM161213-17	SM161213-22	SM161213-27	SM161213-47	SM161213-50
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.5	<0.1	<0.1	0.1
Anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	1.7	<0.1	<0.1	0.1
Pyrene	mg/kg	<0.1	1.9	<0.1	<0.1	0.1
Benzo(a)anthracene	mg/kg	<0.1	1.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	1.1	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	2.1	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	1.3	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.7	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	0.2	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.8	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	2	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	12	NIL(+)VE	NIL(+)VE	0.40
Surrogate p-Terphenyl-d14	%	99	101	97	95	95

PAHs in Soil						
Our Reference:	UNITS	102886-50	102886-59	102886-61	102886-65	102886-66
Your Reference		SM161213-51	SM171213-62	SM171213-64	SM171213-67	SM171213-68
Date Sampled		16/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.1	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	0.44	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94	134	102	96	99

PAHs in Soil						
Our Reference:	UNITS	102886-69	102886-71	102886-72	102886-77	102886-80
Your Reference		SM171213-72	SM171213-75	SM171213-76	SM171213-81	SM171213-84
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	0.2
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.5	0.5
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.5	0.5
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.3	0.3
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.3	0.3
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.6	0.7
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.34	0.39
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.2	0.2
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.2	0.3
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	1
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	3.1	3.4
Surrogate p-Terphenyl-d14	%	100	101	102	106	102

PAHs in Soil				
Our Reference:	UNITS	102886-83	102886-87	102886-88
Your Reference		SM171213-87	SM171213-92	SM171213-93
Date Sampled		17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.1	<0.1
Pyrene	mg/kg	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	0.35	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94	98	98

Organochlorine Pesticides in soil						
Our Reference:	UNITS	102886-1	102886-10	102886-16	102886-17	102886-49
Your Reference		SM161213-01	SM161213-10	SM161213-16	SM161213-17	SM161213-50
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013	21/12/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	84	85	86	91

Organochlorine Pesticides in soil					
Our Reference:	UNITS	102886-61	102886-77	102886-83	102886-87
Your Reference		SM171213-64	SM171213-81	SM171213-87	SM171213-92
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	87	84	83

E13017BEL PCBs in Soil UNITS 102886-1 102886-10 102886-16 102886-17 102886-49 Our Reference: Your Reference -----SM161213-01 SM161213-10 SM161213-16 SM161213-17 SM161213-50 Date Sampled -----16/12/2013 16/12/2013 16/12/2013 16/12/2013 16/12/2013 Type of sample Soil Soil Soil Soil Soil Date extracted 20/12/2013 20/12/2013 20/12/2013 20/12/2013 20/12/2013 -Date analysed 21/12/2013 21/12/2013 21/12/2013 21/12/2013 21/12/2013 -Arochlor 1016 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg Arochlor 1221 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg Arochlor 1232 <0.1 <0.1 <0.1 <0.1 <0.1 mg/kg Arochlor 1242 mg/kg <0.1 <0.1 <0.1 <0.1 <0.1 Arochlor 1248 <0.1 <0.1 mg/kg <0.1 <0.1 <0.1

<0.1

<0.1

84

<0.1

<0.1

85

<0.1

<0.1

86

<0.1

<0.1

91

PCBs in Soil					
Our Reference:	UNITS	102886-61	102886-77	102886-83	102886-87
Your Reference		SM171213-64	SM171213-81	SM171213-87	SM171213-92
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	21/12/2013	21/12/2013	21/12/2013	21/12/2013
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	89	87	84	83

<0.1

<0.1

80

mg/kg

mg/kg

%

Arochlor 1254

Arochlor 1260

Surrogate TCLMX

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-1	102886-2	102886-3	102886-4	102886-5
Your Reference		SM161213-01	SM161213-02	SM161213-03	SM161213-04	SM161213-05
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	5	7	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	15	13	9	19	3
Copper	mg/kg	47	20	19	65	14
Lead	mg/kg	39	13	14	4	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	32	2	1	110	12
Zinc	mg/kg	72	10	9	40	16
Acid Extractable metals in soil						

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-6	102886-10	102886-12	102886-13	102886-16
Your Reference		SM161213-06	SM161213-10	SM161213-12	SM161213-13	SM161213-16
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	10	7	[NA]	[NA]	5
Cadmium	mg/kg	<0.4	<0.4	[NA]	[NA]	<0.4
Chromium	mg/kg	26	20	[NA]	[NA]	3
Copper	mg/kg	8	25	[NA]	[NA]	<1
Lead	mg/kg	27	48	11	26	3
Mercury	mg/kg	<0.1	<0.1	[NA]	[NA]	<0.1
Nickel	mg/kg	2	7	[NA]	[NA]	1
Zinc	mg/kg	36	33	[NA]	[NA]	6

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-17	102886-20	102886-22	102886-23	102886-25
Your Reference		SM161213-17	SM161213-20	SM161213-22	SM161213-23	SM161213-25
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	5	7	9	6	[NA]
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	[NA]
Chromium	mg/kg	2	9	17	11	[NA]
Copper	mg/kg	<1	40	35	29	[NA]
Lead	mg/kg	2	13	60	12	24
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	[NA]
Nickel	mg/kg	1	12	6	3	[NA]
Zinc	mg/kg	4	84	42	22	[NA]

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-27	102886-28	102886-30	102886-33	102886-34
Your Reference		SM161213-27	SM161213-28	SM161213-30	SM161213-33	SM161213-34
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	<4	9	[NA]	<4	[NA]
Cadmium	mg/kg	<0.4	<0.4	[NA]	<0.4	[NA]
Chromium	mg/kg	2	20	[NA]	3	[NA]
Copper	mg/kg	29	77	[NA]	14	[NA]
Lead	mg/kg	3	110	17	180	78
Mercury	mg/kg	<0.1	<0.1	[NA]	<0.1	[NA]
Nickel	mg/kg	1	7	[NA]	1	[NA]
Zinc	mg/kg	5	66	[NA]	140	[NA]

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-39	102886-41	102886-42	102886-44	102886-45
Your Reference		SM161213-39	SM161213-41	SM161213-42	SM161213-44	SM161213-45
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	7	[NA]	[NA]	<4	[NA]
Cadmium	mg/kg	<0.4	[NA]	[NA]	<0.4	[NA]
Chromium	mg/kg	13	[NA]	[NA]	21	[NA]
Copper	mg/kg	15	[NA]	[NA]	56	[NA]
Lead	mg/kg	59	22	10	310	14
Mercury	mg/kg	<0.1	[NA]	[NA]	<0.1	[NA]
Nickel	mg/kg	2	[NA]	[NA]	10	[NA]
Zinc	mg/kg	120	[NA]	[NA]	270	[NA]

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-47	102886-48	102886-49	102886-50	102886-51
Your Reference		SM161213-47	SM161213-49	SM161213-50	SM161213-51	SM161213-52
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	<4	[NA]	<4	10	8
Cadmium	mg/kg	<0.4	[NA]	<0.4	<0.4	<0.4
Chromium	mg/kg	5	[NA]	2	19	23
Copper	mg/kg	7	[NA]	3	17	22
Lead	mg/kg	35	17	9	43	17
Mercury	mg/kg	<0.1	[NA]	<0.1	<0.1	<0.1
Nickel	mg/kg	3	[NA]	<1	4	2
Zinc	mg/kg	85	[NA]	79	74	9

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-54	102886-55	102886-57	102886-59	102886-60
Your Reference		SM161213-55	Trip Blank 1	SM171213-60	SM171213-62	SM171213-63
Date Sampled		16/12/2013	16/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	7	<4	<4	7	8
Cadmium	mg/kg	0.9	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	9	2	30	8	9
Copper	mg/kg	37	1	38	15	30
Lead	mg/kg	15	<1	72	22	15
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	30	1	51	6	2
Zinc	mg/kg	180	2	69	28	12
Acid Extractable metals in soil						

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-61	102886-62	102886-65	102886-66	102886-69
Your Reference		SM171213-64	SM171213-65	SM171213-67	SM171213-68	SM171213-72
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	<4	4	7	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	3	15	8	17
Copper	mg/kg	22	32	15	18	4
Lead	mg/kg	1	2	26	11	130
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	2	3	2	1
Zinc	mg/kg	5	6	28	13	25

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-70	102886-71	102886-72	102886-74	102886-75
Your Reference		SM171213-74	SM171213-75	SM171213-76	SM171213-78	SM171213-79
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	8	6	5	<4	9
Cadmium	mg/kg	4.3	<0.4	<0.4	0.4	<0.4
Chromium	mg/kg	50	21	9	12	24
Copper	mg/kg	110	29	22	32	22
Lead	mg/kg	590	22	27	43	18
Mercury	mg/kg	0.3	<0.1	<0.1	0.1	<0.1
Nickel	mg/kg	48	3	2	6	4
Zinc	mg/kg	1,500	19	20	66	15

UNITS	102886-77	102886-79	102886-80	102886-83	102886-84
	SM171213-81	SM171213-83	SM171213-84	SM171213-87	SM171213-89
	17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
	Soil	Soil	Soil	Soil	Soil
-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
mg/kg	20	<4	10	5	6
mg/kg	0.8	<0.4	<0.4	<0.4	<0.4
mg/kg	17	3	21	3	47
mg/kg	170	21	35	4	25
mg/kg	450	19	160	<1	320
mg/kg	0.2	<0.1	0.6	<0.1	0.2
mg/kg	15	2	5	1	32
mg/kg	280	93	100	2	190
mg/kg	280	93	100	2	190
	102006 05	102006 07	102006 00	102006 00	102886-90
	 	SM171213-81     17/12/2013    Soil  Soil    -  20/12/2013    mg/kg  20    mg/kg  0.8    mg/kg  17    mg/kg  170    mg/kg  15    mg/kg  280	SM171213-81 17/12/2013  SM171213-83 17/12/2013    -  20/12/2013  20/12/2013    -  20/12/2013  20/12/2013    mg/kg  20  <4	SM171213-81  SM171213-83  SM171213-83  SM171213-84	SM171213-81  SM171213-83  SM171213-83  SM171213-84  SM171213-87     17/12/2013  17/12/2013  17/12/2013  Soil  17/12/2013    -  20/12/2013  20/12/2013  20/12/2013  20/12/2013  20/12/2013    -  20/12/2013  20/12/2013  20/12/2013  20/12/2013  20/12/2013    -  20/12/2013  20/12/2013  20/12/2013  20/12/2013  20/12/2013    mg/kg  0.8  <0.4

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-85	102886-87	102886-88	102886-89	102886-90
Your Reference		SM171213-90	SM171213-92	SM171213-93	SM171213-94	SM171213-95
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	8	<4	<4	6	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	18	2	2	12	15
Copper	mg/kg	20	1	<1	41	27
Lead	mg/kg	520	4	4	230	75
Mercury	mg/kg	0.2	<0.1	<0.1	0.4	0.1
Nickel	mg/kg	6	1	1	9	6
Zinc	mg/kg	230	7	5	200	91

Acid Extractable metals in soil						
Our Reference:	UNITS	102886-91	102886-92	102886-99	102886-100	102886-101
Your Reference		SM171213-96	SM171213-97	SM161213-01	SM161213-47	SM171213-72
				-TRIPLICATE	-TRIPLICATE	-TRIPLICATE
DateSampled		17/12/2013	17/12/2013	16/12/2013	16/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Arsenic	mg/kg	<4	6	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	6	10	12	3	17
Copper	mg/kg	16	31	53	4	4
Lead	mg/kg	8	11	5	61	140
Mercury	mg/kg	0.2	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	3	5	85	1	1
Zinc	mg/kg	25	44	33	91	40

Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS	102886-1 SM161213-01 16/12/2013 Soil	102886-2 SM161213-02 16/12/2013 Soil	102886-3 SM161213-03 16/12/2013 Soil	102886-4 SM161213-04 16/12/2013 Soil	102886-5 SM161213-05 16/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	16	25	22	11	22
Moisture						
Our Reference:	UNITS	102886-6	102886-10	102886-12	102886-13	102886-16
Your Reference		SM161213-06	SM161213-10	SM161213-12	SM161213-13	SM161213-16
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	_	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	23	20	18	17	11
Moisture						
Our Reference:	UNITS	102886-17	102886-20	102886-22	102886-23	102886-25
Your Reference		SM161213-17	SM161213-20	SM161213-22	SM161213-23	SM161213-25
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	20	21	18	34	14
	-	1				
Moisture		400000.07				
Our Reference:	UNITS	102886-27	102886-28	102886-30	102886-33	102886-34
Your Reference		SM161213-27	SM161213-28	SM161213-30	SM161213-33	SM161213-34
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	17	15	19	14	12
Moisture						
Our Reference:	UNITS	102886-35	102886-39	102886-41	102886-42	102886-44
Your Reference		SM161213-35	SM161213-39	SM161213-41	SM161213-42	SM161213-44
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	_	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	36	22	21	10	11
	70			- '	.0	

Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-45 SM161213-45 16/12/2013 Soil	102886-47 SM161213-47 16/12/2013 Soil	102886-48 SM161213-49 16/12/2013 Soil	102886-49 SM161213-50 16/12/2013 Soil	102886-50 SM161213-51 16/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	2.8	5.0	15	19	19
Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-51 SM161213-52 16/12/2013 Soil	102886-54 SM161213-55 16/12/2013 Soil	102886-55 Trip Blank 1 16/12/2013 Soil	102886-57 SM171213-60 17/12/2013 Soil	102886-59 SM171213-62 17/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	28	9.4	0.3	11	24
	70	20	0.4	0.0		27
Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-60 SM171213-63 17/12/2013 Soil	102886-61 SM171213-64 17/12/2013 Soil	102886-62 SM171213-65 17/12/2013 Soil	102886-65 SM171213-67 17/12/2013 Soil	102886-66 SM171213-68 17/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	18	9.4	21	21	24
incidere	70	10	0.1	2.	2.	2.
Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-69 SM171213-72 17/12/2013 Soil	102886-70 SM171213-74 17/12/2013 Soil	102886-71 SM171213-75 17/12/2013 Soil	102886-72 SM171213-76 17/12/2013 Soil	102886-74 SM171213-78 17/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	15	24	16	18	18
Moisture						
Our Reference:	UNITS	102886-75	102886-77	102886-79	102886-80	102886-83
Your Reference		SM171213-79	SM171213-81	SM171213-83	SM171213-84	SM171213-87
Date Sampled Type of sample		17/12/2013 Soil	17/12/2013 Soil	17/12/2013 Soil	17/12/2013 Soil	17/12/2013 Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	24	15	18	17	21

Moisture Our Reference: Your Reference Date Sampled Type of sample	UNITS 	102886-84 SM171213-89 17/12/2013 Soil	102886-85 SM171213-90 17/12/2013 Soil	102886-87 SM171213-92 17/12/2013 Soil	102886-88 SM171213-93 17/12/2013 Soil	102886-89 SM171213-94 17/12/2013 Soil
 Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	16	20	4.1	3.2	22
Moisture						
Our Reference:	UNITS	102886-90	102886-91	102886-92	102886-94	102886-95
Your Reference		SM171213-95	SM171213-96	SM171213-97	SM171213-99	Trip blank 2
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	20/12/2013	20/12/2013	20/12/2013	20/12/2013	20/12/2013
Date analysed	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Moisture	%	19	16	12	13	<0.1

Asbestos ID - soils Our Reference:

Your Reference

Date Sampled Type of sample

UNITS	102886-10	102886-16	102886-22	102886-27	102886-59
	SM161213-10	SM161213-16	SM161213-22	SM161213-27	SM171213-62
	16/12/2013	16/12/2013	16/12/2013	16/12/2013	17/12/2013
	Soil	Soil	Soil	Soil	Soil
	03/01/2014	03/01/2014	03/01/2014	03/01/2014	03/01/2014
-	03/01/2014	03/01/2014	03/01/2014	03/01/2014	03/01/2014

Date analysed	-	03/01/2014	03/01/2014	03/01/2014	03/01/2014	03/01/2014
Sample mass tested	g	Approx 20g	Approx 60g	Approx 30g	Approx 40g	Approx 45g
Sample Description	-	Brown fine- grained soil	Beige coarse- grained sandy soil	Brown fine- grained soil	Beige coarse- grained sandy soil	Brown fine- grained clayey soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
Trace Analysis	-	No respirable fibres detected				

Asbestos ID - soils				
Our Reference:	UNITS	102886-65	102886-69	102886-80
Your Reference		SM171213-67	SM171213-72	SM171213-84
Date Sampled		17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil
Date analysed	-	03/01/2014	03/01/2014	03/01/2014
Sample mass tested	g	Approx 50g	Approx 50g	Approx 30g
Sample Description	-	Brown fine- grained soil & rocks	Grey coarse- grained soil & rocks	Brown coarse- grained soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected

ESP/CEC						
Our Reference:	UNITS	102886-1	102886-2	102886-4	102886-5	102886-6
Your Reference		SM161213-01	SM161213-02	SM161213-04	SM161213-05	SM161213-06
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	25	0.4	19	3.6	6.1
ExchangeableK	meq/100g	0.5	0.3	0.4	0.1	0.2
Exchangeable Mg	meq/100g	9.8	3.1	8.4	1.5	2.4
ExchangeableNa	meq/100g	0.50	0.26	0.65	1.6	0.57
Cation Exchange Capacity	meq/100g	36	4.1	28	6.8	9.3

ESP/CEC						
Our Reference:	UNITS	102886-10	102886-16	102886-20	102886-22	102886-23
Your Reference		SM161213-10	SM161213-16	SM161213-20	SM161213-22	SM161213-23
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	10	0.6	11	12	2.6
Exchangeable K	meq/100g	0.6	0.3	0.4	0.6	0.4
Exchangeable Mg	meq/100g	1.1	3.6	5.0	1.6	3.7
ExchangeableNa	meq/100g	0.45	1.7	1.4	0.36	1.1
Cation Exchange Capacity	meq/100g	13	6.2	18	15	7.8

ESP/CEC						
Our Reference:	UNITS	102886-27	102886-28	102886-33	102886-39	102886-44
Your Reference		SM161213-27	SM161213-28	SM161213-33	SM161213-39	SM161213-44
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	16	12	17	11	9.6
Exchangeable K	meq/100g	<0.1	0.8	0.1	<0.1	0.3
ExchangeableMg	meq/100g	0.33	1.0	0.26	0.36	2.2
ExchangeableNa	meq/100g	<0.1	0.19	0.10	<0.1	0.23
Cation Exchange Capacity	meq/100g	16	14	18	11	12

ESP/CEC						
Our Reference:	UNITS	102886-47	102886-49	102886-50	102886-51	102886-54
Your Reference		SM161213-47	SM161213-50	SM161213-51	SM161213-52	SM161213-55
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	17	1.2	10	15	0.3
Exchangeable K	meq/100g	<0.1	<0.1	0.5	0.6	0.6
ExchangeableMg	meq/100g	0.21	<0.1	0.55	4.7	3.4
ExchangeableNa	meq/100g	<0.1	<0.1	<0.1	0.40	2.1
Cation Exchange Capacity	meq/100g	17	1.3	11	21	6.4

ESP/CEC						
Our Reference:	UNITS	102886-57	102886-59	102886-60	102886-61	102886-65
Your Reference		SM171213-60	SM171213-62	SM171213-63	SM171213-64	SM171213-67
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	59	7.8	0.7	17	4.6
Exchangeable K	meq/100g	0.9	0.5	0.5	<0.1	0.4
ExchangeableMg	meq/100g	0.74	3.9	3.1	0.62	1.2
ExchangeableNa	meq/100g	0.75	0.91	1.3	<0.1	0.28
Cation Exchange Capacity	meq/100g	61	13	5.5	17	6.5

ESP/CEC						
Our Reference:	UNITS	102886-66	102886-69	102886-70	102886-71	102886-72
Your Reference		SM171213-68	SM171213-72	SM171213-74	SM171213-75	SM171213-76
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	3.1	30	13	4.7	3.3
Exchangeable K	meq/100g	0.3	0.1	0.4	0.4	0.5
Exchangeable Mg	meq/100g	4.7	0.43	1.6	2.8	5.1
ExchangeableNa	meq/100g	1.2	<0.1	0.16	0.41	0.75
Cation Exchange Capacity	meq/100g	9.3	31	15	8.3	9.6

ESP/CEC						
Our Reference:	UNITS	102886-74	102886-75	102886-77	102886-79	102886-80
Your Reference		SM171213-78	SM171213-79	SM171213-81	SM171213-83	SM171213-84
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	14	1.9	9.2	23	10
Exchangeable K	meq/100g	1.1	0.6	0.5	0.4	0.6
ExchangeableMg	meq/100g	1.9	2.1	1.6	0.21	0.87
ExchangeableNa	meq/100g	0.35	0.51	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	17	5.2	11	23	12

ESP/CEC						
Our Reference:	UNITS	102886-83	102886-84	102886-85	102886-87	102886-89
Your Reference		SM171213-87	SM171213-89	SM171213-90	SM171213-92	SM171213-94
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	18	35	27	1.6	25
Exchangeable K	meq/100g	<0.1	0.5	0.5	<0.1	0.4
ExchangeableMg	meq/100g	1.2	2.6	1.4	<0.1	1.4
ExchangeableNa	meq/100g	0.11	0.35	<0.1	<0.1	<0.1
Cation Exchange Capacity	meq/100g	20	39	29	1.8	27

ESP/CEC				
Our Reference:	UNITS	102886-90	102886-91	102886-92
Your Reference		SM171213-95	SM171213-96	SM171213-97
Date Sampled		17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil
Exchangeable Ca	meq/100g	17	0.6	<0.1
Exchangeable K	meq/100g	0.4	0.4	0.4
ExchangeableMg	meq/100g	1.5	4.0	3.8
ExchangeableNa	meq/100g	0.11	1.5	2.3
Cation Exchange Capacity	meq/100g	19	6.5	6.6

Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-1	102886-2	102886-4	102886-5	102886-6
Your Reference		SM161213-01	SM161213-02	SM161213-04	SM161213-05	SM161213-06
DateSampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	_	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed		07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
	-					
pH 1:5 soil:water	pH Units	8.8	4.5	8.8	6.7	4.9
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	[NA]	100	630	510
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	[NA]	<10	[NA]	150
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	10	[NA]	690
Resistivity in soil*	ohmm	[NA]	[NA]	96	[NA]	20
Miscellaneous Inorg - soil		1				
Our Reference:	UNITS	102886-7	102886-8	102886-9	102886-10	102886-16
Your Reference		SM161213-07	SM161213-08	SM161213-09	SM161213-10	SM161213-16
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pHUnits	[NA]	5.1	5.2	5.6	5.1
Electrical Conductivity 1:5 soil:water	µS/cm	190	92	310	[NA]	[NA]
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	21	320	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	130	200	[NA]	[NA]
Resistivity in soil*	ohmm	[NA]	110	32	[NA]	[NA]
Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-20	102886-22	102886-23	102886-27	102886-28
Your Reference		SM161213-20	SM161213-22	SM161213-23	SM161213-27	SM161213-28
Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pHUnits	7.0	6.4	5.1	9.3	7.2
Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-33	102886-39	102886-44	102886-47	102886-49
	0.410	SM161213-33	SM161213-39	SM161213-44	SM161213-47	SM161213-50
Your Reference		000101210.00				
Your Reference Date Sampled		16/12/2013	16/12/2013	16/12/2013	16/12/2013	16/12/2013
				16/12/2013 Soil	16/12/2013 Soil	16/12/2013 Soil
Date Sampled	 	16/12/2013	16/12/2013			
Date Sampled Type of sample	  - -	16/12/2013 Soil	16/12/2013 Soil	Soil	Soil	Soil

Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-50	102886-51	102886-54	102886-57	102886-59
Your Reference		SM161213-51	SM161213-52	SM161213-55	SM171213-60	SM171213-62
Date Sampled		16/12/2013	16/12/2013	16/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pH Units	7.8	7.4	6.5	10.2	5.6
Electrical Conductivity 1:5 soil:water	µS/cm	[NA]	93	320	[NA]	[NA]
Chloride, Cl 1:5 soil:water	mg/kg	[NA]	<10	360	[NA]	[NA]
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	20	150	[NA]	[NA]
Resistivity in soil*	ohmm	[NA]	110	31	[NA]	[NA]
Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-60	102886-61	102886-65	102886-66	102886-69
Your Reference		SM171213-63	SM171213-64	SM171213-67	SM171213-68	SM171213-72
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pH Units	5.4	9.9	6.2	4.9	8.6
		1				
Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-70	102886-71	102886-72	102886-74	102886-75
Your Reference		SM171213-74	SM171213-75	SM171213-76	SM171213-78	SM171213-79
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pH Units	7.7	4.8	4.7	6.5	5.0
	1					
Miscellaneous Inorg - soil		400000 77	100000 70	100000 00	100000 00	102886-84
Our Reference: Your Reference	UNITS	102886-77 SM171213-81	102886-79 SM171213-83	102886-80 SM171213-84	102886-83 SM171213-87	SM171213-8
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pHUnits	6.1	9.0	6.8	8.9	8.2
Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-85	102886-87	102886-89	102886-90	102886-91
Your Reference		SM171213-90	SM171213-92	SM171213-94	SM171213-95	SM171213-9
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pH Units	8.6	9.2	8.2	7.4	5.5
Electrical Conductivity 1:5 soil:water	μS/cm	[NA]	58	130	200	100
Chloride, Cl 1:5 soil:water			[NA]	<10	<10	29
Chionue, CI 1.5 Soll:Water	mg/kg	[NA]	[INA]	<10	<10	29

Miscellaneous Inorg - soil						
Our Reference:	UNITS	102886-85	102886-87	102886-89	102886-90	102886-91
Your Reference		SM171213-90	SM171213-92	SM171213-94	SM171213-95	SM171213-96
Date Sampled		17/12/2013	17/12/2013	17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil	Soil	Soil
Sulphate, SO4 1:5 soil:water	mg/kg	[NA]	[NA]	20	110	130
Resistivity in soil*	ohm m	[NA]	[NA]	79	50	96

Miscellaneous Inorg - soil				
Our Reference:	UNITS	102886-92	102886-93	102886-94
Your Reference		SM171213-97	SM171213-98	SM171213-99
Date Sampled		17/12/2013	17/12/2013	17/12/2013
Type of sample		Soil	Soil	Soil
Date prepared	-	23/12/2013	23/12/2013	23/12/2013
Date analysed	-	07/01/2014	07/01/2014	07/01/2014
pH 1:5 soil:water	pH Units	5.4	[NA]	6.3
Electrical Conductivity 1:5 soil:water	µS/cm	190	310	780
Chloride, Cl 1:5 soil:water	mg/kg	88	[NA]	1,000
Sulphate, SO4 1:5 soil:water	mg/kg	210	[NA]	280
Resistivity in soil*	ohmm	51	[NA]	13

vTRH(C6-C10)/BTEXN in Water		
Our Reference:	UNITS	102886-97
Your Reference		Rinsate 1
Date Sampled		17/12/2013
Type of sample		Water
Date extracted	-	20/12/2013
Date analysed	-	21/12/2013
TRHC6 - C9	μg/L	<10
<b>TRHC</b> 6 - C 10	µg/L	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	<1
m+p-xylene	µg/L	<2
o-xylene	µg/L	<1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	112
Surrogate toluene-d8	%	95
Surrogate 4-BFB	%	83

svTRH (C10-C40) in Water		
Our Reference:	UNITS	102886-97
Your Reference		Rinsate 1
Date Sampled		17/12/2013
Type of sample		Water
Date extracted	-	20/12/2013
Date analysed	-	20/12/2013
TRHC 10 - C 14	µg/L	<50
TRHC 15 - C28	µg/L	<100
TRHC ₂₉ - C ₃₆	µg/L	<100
TRH>C10 - C16	µg/L	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50
TRH>C16 - C34	μg/L	<100
TRH>C34 - C40	μg/L	<100
Surrogate o-Terphenyl	%	94

PAHs in Water		
Our Reference:	UNITS	102886-97
Your Reference		Rinsate 1
Date Sampled		17/12/2013
Type of sample		Water
Date extracted	-	20/12/2013
Date analysed	-	20/12/2013
Naphthalene	µg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	µg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	µg/L	<1
Chrysene	µg/L	<1
Benzo(b+k)fluoranthene	µg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL(+)VE
Surrogate p-Terphenyl-d14	%	114

Metals in Water - Dissolved Our Reference: Your Reference Date Sampled Type of sample	UNITS	102886-97 Rinsate 1 17/12/2013 Water
Date digested	-	23/12/2013
Date analysed	-	23/12/2013
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell at 25oC in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B.
Org-013	Water samples are analysed directly by purge and trap GC-MS.

		Clie	ent Reference	e: E	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II %RPD		
Date extracted	-			20/12/2 013	102886-4	20/12/2013  20/12/2013	LCS-2	20/12/2013
Date analysed	-			23/12/2 013	102886-4	23/12/2013  23/12/2013	LCS-2	23/12/2013
TRHC6 - C9	mg/kg	25	Org-016	<25	102886-4	<25  <25	LCS-2	89%
TRHC6 - C10	mg/kg	25	Org-016	<25	102886-4	<25  <25	LCS-2	89%
Benzene	mg/kg	0.2	Org-016	<0.2	102886-4	<0.2  <0.2	LCS-2	93%
Toluene	mg/kg	0.5	Org-016	<0.5	102886-4	<0.5  <0.5	LCS-2	87%
Ethylbenzene	mg/kg	1	Org-016	<1	102886-4	<1  <1	LCS-2	84%
m+p-xylene	mg/kg	2	Org-016	2	102886-4	<2  <2	LCS-2	90%
o-Xylene	mg/kg	1	Org-016	<1	102886-4	<1  <1	LCS-2	90%
naphthalene	mg/kg	1	Org-014	<1	102886-4	<1  <1	[NR]	[NR]
Surrogate aaa- Trifluorotoluene	%		Org-016	100	102886-4	101  78  RPD:26	LCS-2	108%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			20/12/2 013	102886-4	20/12/2013  20/12/2013	LCS-2	20/12/2013
Date analysed	-			21/12/2 013	102886-4	21/12/2013  21/12/2013	LCS-2	21/12/2013
TRHC 10 - C14	mg/kg	50	Org-003	<50	102886-4	<50  <50	LCS-2	98%
TRHC 15 - C28	mg/kg	100	Org-003	<100	102886-4	<100  <100	LCS-2	105%
TRHC29 - C36	mg/kg	100	Org-003	<100	102886-4	<100  <100	LCS-2	91%
TRH>C10-C16	mg/kg	50	Org-003	<50	102886-4	<50  <50	LCS-2	98%
TRH>C16-C34	mg/kg	100	Org-003	<100	102886-4	<100  <100	LCS-2	105%
TRH>C34-C40	mg/kg	100	Org-003	<100	102886-4	<100  <100	LCS-2	91%
Surrogate o-Terphenyl	%		Org-003	90	102886-4	92  88  RPD:4	LCS-2	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Date extracted	-			20/12/2 013	102886-4	20/12/2013  20/12/2013	LCS-2	20/12/2013
Date analysed	-			20/12/2 013	102886-4	21/12/2013  21/12/2013	LCS-2	20/12/2013
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	102%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	106%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	100%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	98%

			ent Referenc	-	13017BEL	1	1	1
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	104%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	LCS-2	95%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	102886-4	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	102886-4	<0.05  <0.05	LCS-2	105%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	102886-4	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl- d14	%		Org-012 subset	99	102886-4	98  99  RPD:1	LCS-2	98%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			20/12/2	102886-1	20/12/2013  20/12/2013	LCS-2	20/12/2013
Dete such as d				013	400000 4	04/40/00401104/40/0040	100.0	04/40/0040
Date analysed	-			21/12/2 013	102886-1	21/12/2013  21/12/2013	LCS-2	21/12/2013
HCB	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	89%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	LCS-2	93%
Heptachlor	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	LCS-2	93%
delta-BHC	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	LCS-2	93%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	LCS-2	96%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	91%
Dieldrin	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	96%
Endrin	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	96%
pp-DDD	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	95%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1    <0.1	LCS-2	91%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
-		0.1						
Surrogate TCMX	%		Org-005	85	102886-1	80  85  RPD:6	LCS-2	80%

		Clie	nt Referenc	e: E [⁄]	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		,
Date extracted	-			20/12/2 013	102886-1	20/12/2013  20/12/2013	LCS-2	20/12/2013
Date analysed	-			21/12/2 013	102886-1	21/12/2013  21/12/2013	LCS-2	21/12/2013
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	LCS-2	100%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	102886-1	<0.1  <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	85	102886-1	80  85  RPD:6	LCS-2	79%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			[NT]	102886-1	20/12/2013  20/12/2013	LCS-9	20/12/2013
Date analysed	-			[NT]	102886-1	20/12/2013  20/12/2013	LCS-9	20/12/2013
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	102886-1	5    <4	LCS-9	96%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	102886-1	<0.4  <0.4	LCS-9	103%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	102886-1	15  14  RPD:7	LCS-9	104%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	102886-1	47  47  RPD:0	LCS-9	104%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	102886-1	39  7  RPD:139	LCS-9	98%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	102886-1	<0.1  <0.1	LCS-9	91%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	102886-1	32  73  RPD:78	LCS-9	103%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	102886-1	72  37  RPD:64	LCS-9	101%

Client	Reference:
--------	------------

E13017BEL

			nt Referenc	e. L				
QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			[NT]	1			
Date analysed	_			[NT]				
Moisture	%	0.1	Inorg-008	<0.1				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	4			
Asbestos ID - soils								
Date analysed	-			[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
ESP/CEC						Base II Duplicate II % RPD		
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	102886-1	25  22  RPD:13	LCS-1	109%
Exchangeable K	meq/100 g	0.1	Metals-009	<0.1	102886-1	0.5  0.4  RPD:22	LCS-1	105%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	102886-1	9.8  9.1  RPD:7	LCS-1	105%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	102886-1	0.50  0.50  RPD:0	LCS-1	111%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	102886-1	36  32  RPD:12	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			23/12/2 013	102886-1	23/12/2013  23/12/2013	LCS-1	23/12/2013
Date analysed	-			07/01/2 014	102886-1	07/01/2014  07/01/2014	LCS-1	07/01/2014
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	102886-1	8.8  8.8  RPD:0	LCS-1	100%
Electrical Conductivity 1:5 soil:water	µS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-1	104%
Chloride, Cl 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	LCS-1	117%
Sulphate, SO4 1:5 soil:water	mg/kg	10	Inorg-081	<10	[NT]	[NT]	LCS-1	114%
Resistivity in soil*	ohm m	1	Inorg-002	<1.0	[NT]	[NT]	LCS-1	104%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike %
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		Recovery
Date extracted	-			20/12/2 013	[NT]	[NT]	LCS-W1	20/12/2013
Date analysed	-			21/12/2 013	[NT]	[NT]	LCS-W1	21/12/2013
TRHC6 - C9	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
TRHC6 - C10	μg/L	10	Org-016	<10	[NT]	[NT]	LCS-W1	96%
Benzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	101%
Toluene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	93%
Ethylbenzene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	93%
m+p-xylene	μg/L	2	Org-016	~2	[NT]	[NT]	LCS-W1	97%
o-xylene	μg/L	1	Org-016	<1	[NT]	[NT]	LCS-W1	95%
Naphthalene	μg/L	1	Org-013	<1	[NT]	[NT]	[NR]	[NR]

Envirolab Reference: 102886 Revision No: R 01

			ent Reference	-	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
Water								
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	108	[NT]	[NT]	LCS-W1	107%
Surrogate toluene-d8	%		Org-016	94	[NT]	[NT]	LCS-W1	103%
Surrogate 4-BFB	%		Org-016	86	[NT]	[NT]	LCS-W1	99%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II % RPD		
Date extracted	-			20/12/2 013	[NT]	[NT]	LCS-W1	20/12/2013
Date analysed	-			20/12/2 013	[NT]	[NT]	LCS-W1	20/12/2013
TRHC 10 - C 14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	84%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	100%
TRHC 29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	121%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	84%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	100%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	121%
Surrogate o-Terphenyl	%		Org-003	74	[NT]	[NT]	LCS-W1	112%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			[NT]	[NT]	[NT]	LCS-W1	20/12/2013
Date analysed	-			[NT]	[NT]	[NT]	LCS-W1	20/12/2013
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	83%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	85%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	82%
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	81%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	86%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	80%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	~2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	87%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]

		Clie	ent Referenc	e: E	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	[NT]	[NT]	[NT]	LCS-W1	85%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Metals in Water - Dissolved					Sm#	Base II Duplicate II % RPD		Recovery
Date digested	-			23/12/2 013	[NT]	[NT]	LCS-W1	23/12/2013
Date analysed	-			23/12/2 013	[NT]	[NT]	LCS-W1	23/12/2013
Arsenic - Dissolved	mg/L	0.05	Metals-020 ICP-AES	<0.05	[NT]	[NT]	LCS-W1	90%
Cadmium - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	98%
Chromium - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	94%
Copper - Dissolved	mg/L	0.01	Metals-020 ICP-AES	<0.01	[NT]	[NT]	LCS-W1	94%
Lead - Dissolved	mg/L	0.03	Metals-020 ICP-AES	<0.03	[NT]	[NT]	LCS-W1	93%
Mercury - Dissolved	mg/L	0.0005	Metals-021 CV-AAS	<0.000 5	[NT]	[NT]	LCS-W1	100%
Nickel - Dissolved	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	95%
Zinc - Dissolved	mg/L	0.02	Metals-020 ICP-AES	<0.02	[NT]	[NT]	LCS-W1	95%
QUALITYCONTROL	UNITS	6 I	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	overy
vTRH(C6-C10)/BTEXNin Soil				Base+I	Duplicate+%RP	2 D		
Date extracted	-	1	02886-27	20/12/2	2013  20/12/201	3 LCS-3	20/12/201	3
Date analysed	-	1	02886-27	23/12/2	2013  23/12/201	3 LCS-3	23/12/201	3
TRHC6 - C9	mg/kg	g   1	02886-27		<25  <25	LCS-3	95%	
TRHC6 - C10	mg/kę	g   1	02886-27		<25  <25	LCS-3	95%	
Benzene	mg/kę	g   1	02886-27	.	<0.2  <0.2	LCS-3	88%	
Toluene	mg/kę	g   1	02886-27	.	<0.5  <0.5	LCS-3	94%	
Ethylbenzene	mg/kę	g   1	02886-27		<1  <1	LCS-3	94%	
m+p-xylene	mg/kę	g   1	02886-27		<2  <2	LCS-3	96%	
o-Xylene	mg/kę	g   1	02886-27		<1  <1	LCS-3	99%	
naphthalene	mg/k	g   1	02886-27		<1  <1	[NR]	[NR]	
<i>Surrogate</i> aaa- Trifluorotoluene	%	1	02886-27	97	101  RPD:4	LCS-3	97%	

Client Reference: E13017BEL								
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	102886-27	20/12/2013  20/12/2013	LCS-3	20/12/2013			
Date analysed	-	102886-27	21/12/2013  21/12/2013	LCS-3	21/12/2013			
TRHC 10 - C 14	mg/kg	102886-27	<50  <50	LCS-3	99%			
TRHC 15 - C28	mg/kg	102886-27	<100  <100	LCS-3	110%			
TRHC29 - C36	mg/kg	102886-27	<100  <100	LCS-3	103%			
TRH>C10-C16	mg/kg	102886-27	<50  <50	LCS-3	99%			
TRH>C16-C34	mg/kg	102886-27	<100  <100	LCS-3	110%			
TRH>C34-C40	mg/kg	102886-27	<100  <100	LCS-3	103%			
Surrogate o-Terphenyl	%	102886-27	89  87  RPD:2	LCS-3	106%			
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	102886-27	20/12/2013  20/12/2013	LCS-3	20/12/2013			
Date analysed	-	102886-27	21/12/2013  21/12/2013	LCS-3	20/12/2013			
Naphthalene	mg/kg	102886-27	<0.1  <0.1	LCS-3	107%			
Acenaphthylene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Acenaphthene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Fluorene	mg/kg	102886-27	<0.1  <0.1	LCS-3	110%			
Phenanthrene	mg/kg	102886-27	<0.1  <0.1	LCS-3	105%			
Anthracene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Fluoranthene	mg/kg	102886-27	<0.1  <0.1	LCS-3	102%			
Pyrene	mg/kg	102886-27	<0.1  <0.1	LCS-3	108%			
Benzo(a)anthracene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Chrysene	mg/kg	102886-27	<0.1  <0.1	LCS-3	98%			
Benzo(b+k)fluoranthene	mg/kg	102886-27	<0.2  <0.2	[NR]	[NR]			
Benzo(a)pyrene	mg/kg	102886-27	<0.05  <0.05	LCS-3	111%			
Indeno(1,2,3-c,d)pyrene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Dibenzo(a,h)anthracene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Benzo(g,h,i)perylene	mg/kg	102886-27	<0.1  <0.1	[NR]	[NR]			
Surrogate p-Terphenyl-d14	%	102886-27	97  89  RPD:9	LCS-3	102%			

Client Reference: E13017BEL								
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	[NT]	[NT]	102886-10	20/12/2013			
Date analysed	-	[NT]	[NT]	102886-10	21/12/2013			
HCB	mg/kg	[NT]	[NT]	[NR]	[NR]			
alpha-BHC	mg/kg	[NT]	[NT]	102886-10	89%			
gamma-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]			
beta-BHC	mg/kg	[NT]	[NT]	102886-10	94%			
Heptachlor	mg/kg	[NT]	[NT]	102886-10	93%			
delta-BHC	mg/kg	[NT]	[NT]	[NR]	[NR]			
Aldrin	mg/kg	[NT]	[NT]	102886-10	93%			
Heptachlor Epoxide	mg/kg	[NT]	[NT]	102886-10	96%			
gamma-Chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]			
alpha-chlordane	mg/kg	[NT]	[NT]	[NR]	[NR]			
Endosulfan I	mg/kg	[NT]	[NT]	[NR]	[NR]			
pp-DDE	mg/kg	[NT]	[NT]	102886-10	92%			
Dieldrin	mg/kg	[NT]	[NT]	102886-10	96%			
Endrin	mg/kg	[NT]	[NT]	102886-10	89%			
pp-DDD	mg/kg	[NT]	[NT]	102886-10	95%			
Endosulfan II	mg/kg	[NT]	[NT]	[NR]	[NR]			
pp-DDT	mg/kg	[NT]	[NT]	[NR]	[NR]			
Endrin Aldehyde	mg/kg	[NT]	[NT]	[NR]	[NR]			
Endosulfan Sulphate	mg/kg	[NT]	[NT]	102886-10	88%			
Methoxychlor	mg/kg	[NT]	[NT]	[NR]	[NR]			
Surrogate TCMX	%	[NT]	[NT]	102886-10	85%			

Client Reference: E13017BEL								
QUALITY CONTROL PCBs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	[NT]	[NT]	102886-10	20/12/2013			
Date analysed	-	[NT]	[NT]	102886-10	21/12/2013			
Arochlor 1016	mg/kg	[NT]	[NT]	[NR]	[NR]			
Arochlor 1221	mg/kg	[NT]	[NT]	[NR]	[NR]			
Arochlor 1232	mg/kg	[NT]	[NT]	[NR]	[NR]			
Arochlor 1242	mg/kg	[NT]	[NT]	[NR]	[NR]			
Arochlor 1248	mg/kg	[NT]	[NT]	[NR]	[NR]			
Arochlor 1254	mg/kg	[NT]	[NT]	102886-10	101%			
Arochlor 1260	mg/kg	[NT]	[NT]	[NR]	[NR]			
Surrogate TCLMX	%	[NT]	[NT]	102886-10	81%			
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date digested	-	102886-4	20/12/2013  20/12/2013	LCS-10	20/12/2013			
Date analysed	-	102886-4	20/12/2013  20/12/2013	LCS-10	20/12/2013			
Arsenic	mg/kg	102886-4	<4  <4	LCS-10	98%			
Cadmium	mg/kg	102886-4	<0.4  <0.4	LCS-10	106%			
Chromium	mg/kg	102886-4	19  21  RPD:10	LCS-10	107%			
Copper	mg/kg	102886-4	65  67  RPD:3	LCS-10	106%			
Lead	mg/kg	102886-4	4  5  RPD:22	LCS-10	100%			
Mercury	mg/kg	102886-4	<0.1  <0.1	LCS-10	96%			
Nickel	mg/kg	102886-4	110  110  RPD:0	LCS-10	105%			
Zinc	mg/kg	102886-4	40  48  RPD:18	LCS-10	104%			
QUALITY CONTROL ESP/CEC	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Exchangeable Ca	meq/100 g	102886-27	16  17  RPD:6	LCS-2	119%			
Exchangeable K	meq/100 g	102886-27	<0.1  <0.1	LCS-2	114%			
ExchangeableMg	meq/100 g	102886-27	0.33  0.37  RPD:11	LCS-2	114%			
ExchangeableNa	meq/100 g	102886-27	<0.1  <0.1	LCS-2	118%			
Cation Exchange Capacity	meq/100 g	102886-27	16    17    RPD: 6	[NR]	[NR]			
		Client Reference	e: E13017BEL					
--------------------------------------------------	----------	------------------	--------------------------------------	-----------	------------------			
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date prepared	-	102886-20	23/12/2013  23/12/2013	LCS-2	23/12/2013			
Date analysed	-	102886-20	07/01/2014  07/01/2014	LCS-2	07/01/2014			
pH 1:5 soil:water	pH Units	102886-20	7.0  7.1  RPD:1	LCS-2	99%			
Electrical Conductivity 1:5 soil:water	µS/cm	[NT]	[NT]	LCS-2	99%			
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]			
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]			
Resistivity in soil*	ohm m	[NT]	[NT]	[NR]	[NR]			
QUALITY CONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	102886-47	20/12/2013  20/12/2013	102886-10	20/12/2013			
Date analysed	-	102886-47	23/12/2013  23/12/2013	102886-10	23/12/2013			
TRHC6 - C9	mg/kg	102886-47	<25  <25	102886-10	82%			
TRHC6 - C10	mg/kg	102886-47	<25  <25	102886-10	82%			
Benzene	mg/kg	102886-47	<0.2  <0.2	102886-10	83%			
Toluene	mg/kg	102886-47	<0.5  <0.5	102886-10	76%			
Ethylbenzene	mg/kg	102886-47	<1  <1	102886-10	79%			
m+p-xylene	mg/kg	102886-47	<2  <2	102886-10	86%			
o-Xylene	mg/kg	102886-47	<1  <1	102886-10	84%			
naphthalene	mg/kg	102886-47	<1  <1	[NR]	[NR]			
Surrogate aaa- Trifluorotoluene	%	102886-47	104  103  RPD:1	102886-10	101%			
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery			
Date extracted	-	102886-47	20/12/2013  20/12/2013	102886-10	20/12/2013			
Date analysed	-	102886-47	21/12/2013  21/12/2013	102886-10	21/12/2013			
TRHC 10 - C 14	mg/kg	102886-47	<50    <50	102886-10	88%			
TRHC 15 - C28	mg/kg	102886-47	<100  <100	102886-10	106%			
TRHC 29 - C 36	mg/kg	102886-47	<100  <100	102886-10	98%			
TRH>C10-C16	mg/kg	102886-47	<50  <50	102886-10	88%			
TRH>C16-C34	mg/kg	102886-47	<100  <100	102886-10	106%			
TRH>C34-C40	mg/kg	102886-47	<100  <100	102886-10	98%			
Surrogate o-Terphenyl	%	102886-47	95  106  RPD:11	102886-10	96%			

		Client Referenc	e: E13017BEL		
QUALITY CONTROL PAHs in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	102886-47	20/12/2013  20/12/2013	102886-10	20/12/2013
Date analysed	-	102886-47	21/12/2013  21/12/2013	102886-10	20/12/2013
Naphthalene	mg/kg	102886-47	<0.1  <0.1	102886-10	102%
Acenaphthylene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	102886-47	<0.1  <0.1	102886-10	108%
Phenanthrene	mg/kg	102886-47	<0.1  <0.1	102886-10	103%
Anthracene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	102886-47	<0.1  <0.1	102886-10	106%
Pyrene	mg/kg	102886-47	<0.1  <0.1	102886-10	112%
Benzo(a)anthracene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	102886-47	<0.1  <0.1	102886-10	100%
Benzo(b+k)fluoranthene	mg/kg	102886-47	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	102886-47	<0.05  <0.05	102886-10	115%
Indeno(1,2,3-c,d)pyrene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	102886-47	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	102886-47	95  110  RPD:15	102886-10	99%
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date digested	-	102886-27	20/12/2013  20/12/2013	LCS-11	20/12/2013
Date analysed	-	102886-27	20/12/2013  20/12/2013	LCS-11	20/12/2013
Arsenic	mg/kg	102886-27	<4  <4	LCS-11	90%
Cadmium	mg/kg	102886-27	<0.4  <0.4	LCS-11	96%
Chromium	mg/kg	102886-27	2  2  RPD:0	LCS-11	97%
Copper	mg/kg	102886-27	29  21  RPD:32	LCS-11	98%
Lead	mg/kg	102886-27	3  3  RPD:0	LCS-11	92%
Mercury	mg/kg	102886-27	<0.1  0.3	LCS-11	89%
Nickel	mg/kg	102886-27	1  1  RPD:0	LCS-11	96%
Zinc	mg/kg	102886-27	5  4  RPD:22	LCS-11	94%

		Client Referenc	e: E13017BEL		
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
ESP/CEC			Base + Duplicate + %RPD		
ExchangeableCa	meq/100 g	102886-57	59  63  RPD:7	LCS-3	109%
ExchangeableK	meq/100 g	102886-57	0.9  0.9  RPD:0	LCS-3	107%
ExchangeableMg	meq/100 g	102886-57	0.74  0.75  RPD:1	LCS-3	105%
ExchangeableNa	meq/100 g	102886-57	0.75  0.74  RPD:1	LCS-3	107%
Cation Exchange Capacity	meq/100 g	102886-57	61    65    RPD: 6	[NR]	[NR]
QUALITY CONTROL Miscellaneous Inorg - soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date prepared	-	102886-50	23/12/2013  23/12/2013	LCS-3	23/12/2013
Date analysed	-	102886-50	07/01/2014  07/01/2014	LCS-3	07/01/2014
pH 1:5 soil:water	pH Units	102886-50	7.8  8.2  RPD:5	LCS-3	101%
Electrical Conductivity 1:5 soil:water	µS/cm	[NT]	[NT]	LCS-3	105%
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	[NR]	[NR]
Resistivity in soil*	ohm m	[NT]	[NT]	[NR]	[NR]
QUALITYCONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	102886-69	20/12/2013  20/12/2013	102886-50	20/12/2013
Date analysed	-	102886-69	23/12/2013  23/12/2013	102886-50	23/12/2013
TRHC6 - C9	mg/kg	102886-69	<25  <25	102886-50	97%
TRHC6 - C10	mg/kg	102886-69	<25  <25	102886-50	97%
Benzene	mg/kg	102886-69	<0.2  <0.2	102886-50	84%
Toluene	mg/kg	102886-69	<0.5  <0.5	102886-50	89%
Ethylbenzene	mg/kg	102886-69	<1  <1	102886-50	99%
m+p-xylene	mg/kg	102886-69	<2  <2	102886-50	103%
o-Xylene	mg/kg	102886-69	<1  <1	102886-50	106%
naphthalene	mg/kg	102886-69	<1  <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%	102886-69	88    85    RPD: 3	102886-50	82%

		<b>Client Referenc</b>	e: E13017BEL		
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	102886-69	20/12/2013  20/12/2013	102886-50	20/12/2013
Date analysed	-	102886-69	21/12/2013  21/12/2013	102886-50	21/12/2013
TRHC 10 - C 14	mg/kg	102886-69	<50  <50	102886-50	99%
TRHC 15 - C28	mg/kg	102886-69	<100  <100	102886-50	104%
TRHC 29 - C 36	mg/kg	102886-69	<100  <100	102886-50	89%
TRH>C10-C16	mg/kg	102886-69	<50  <50	102886-50	99%
TRH>C16-C34	mg/kg	102886-69	<100  <100	102886-50	104%
TRH>C34-C40	mg/kg	102886-69	<100  <100	102886-50	89%
Surrogate o-Terphenyl	%	102886-69	94  91  RPD:3	102886-50	101%
QUALITY CONTROL PAHs in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	102886-69	20/12/2013  20/12/2013	102886-50	20/12/2013
Date analysed	-	102886-69	21/12/2013  21/12/2013	102886-50	20/12/2013
Naphthalene	mg/kg	102886-69	<0.1  <0.1	102886-50	101%
Acenaphthylene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	102886-69	<0.1  <0.1	102886-50	108%
Phenanthrene	mg/kg	102886-69	<0.1  <0.1	102886-50	103%
Anthracene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	102886-69	<0.1  <0.1	102886-50	103%
Pyrene	mg/kg	102886-69	<0.1  <0.1	102886-50	108%
Benzo(a)anthracene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	102886-69	<0.1  <0.1	102886-50	97%
Benzo(b+k)fluoranthene	mg/kg	102886-69	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	102886-69	<0.05  0.06	102886-50	112%
Indeno(1,2,3-c,d)pyrene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	102886-69	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	102886-69	100  100  RPD:0	102886-50	99%

		Client Referen	ce: E13017BEL		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Date digested	-	102886-47	20/12/2013  20/12/2013	LCS-12	20/12/2013
Date analysed	-	102886-47	20/12/2013  20/12/2013	LCS-12	20/12/2013
Arsenic	mg/kg	102886-47	<4    <4	LCS-12	96%
Cadmium	mg/kg	102886-47	<0.4  <0.4	LCS-12	101%
Chromium	mg/kg	102886-47	5  8  RPD:46	LCS-12	106%
Copper	mg/kg	102886-47	7  6  RPD:15	LCS-12	107%
Lead	mg/kg	102886-47	35  55  RPD:44	LCS-12	98%
Mercury	mg/kg	102886-47	<0.1  <0.1	LCS-12	94%
Nickel	mg/kg	102886-47	3  5  RPD:50	LCS-12	103%
Zinc	mg/kg	102886-47	85  350  RPD:122	LCS-12	101%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
ESP/CEC			Base + Duplicate + %RPD		
Exchangeable Ca	meq/100	102886-74	14  16  RPD:13		
	g				
ExchangeableK	meq/100 g	102886-74	1.1  1.1  RPD:0		
ExchangeableMg	meq/100 g	102886-74	1.9  2.0  RPD:5		
ExchangeableNa	meq/100 g	102886-74	0.35  0.35  RPD:0		
Cation Exchange Capacity	meq/100 g	102886-74	17  20  RPD:16		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	102886-70	23/12/2013  23/12/2013	102886-4	23/12/2013
Date analysed	-	102886-70	07/01/2014  07/01/2014	102886-4	07/01/2014
pH 1:5 soil:water	pH Units	102886-70	7.7  7.9  RPD:3	[NR]	[NR]
Electrical Conductivity 1:5 soil:water	µS/cm	[NT]	[NT]	[NR]	[NR]
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]	102886-4	102%
Sulphate, SO4 1:5 soil:water	mg/kg	[NT]	[NT]	102886-4	116%
Resistivity in soil*	ohmm	[NT]	[NT]	[NR]	[NR]
QUALITY CONTROL Acid Extractable metals in soil	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Datedigested	-	102886-69	20/12/2013  20/12/2013	102886-17	20/12/2013
Date analysed	-	102886-69		102886-17	20/12/2013
Arsenic	mg/kg	102886-69	<4  <4	102886-17	98%
Cadmium	mg/kg	102886-69	<0.4  <0.4	102886-17	103%
Chromium	mg/kg	102886-69	17  15  RPD:12	102886-17	99%
Copper	mg/kg	102886-69	4  5  RPD:22	102886-17	103%

		Client Reference	e: E13017BEL		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + %RPD		
Mercury	mg/kg	102886-69	<0.1  <0.1	102886-17	115%
Nickel	mg/kg	102886-69	1  1  RPD:0	102886-17	98%
Zinc	mg/kg	102886-69	25  81  RPD:106	102886-17	99%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
ESP/CEC			Base + Duplicate + % RPD		
Exchangeable Ca	meq/100	102886-90	17  18  RPD:6		
<b>Evelopeeekle</b> K	g	100000 00			
ExchangeableK	meq/100 g	102886-90	0.4  0.4  RPD:0		
ExchangeableMg	meq/100	102886-90	1.5  1.6  RPD:6		
	g				
ExchangeableNa	meq/100	102886-90	0.11  0.13  RPD:17		
	g				
Cation Exchange Capacity	meq/100 g	102886-90	19  20  RPD:5		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in			Base + Duplicate + %RPD		
soil					
Datedigested	-	102886-85	20/12/2013  20/12/2013	102886-50	20/12/2013
Date analysed	-	102886-85	20/12/2013  20/12/2013	102886-50	20/12/2013
Arsenic	mg/kg	102886-85	8  5  RPD:46	102886-50	79%
Cadmium	mg/kg	102886-85	<0.4  <0.4	102886-50	82%
Chromium	mg/kg	102886-85	18  17  RPD:6	102886-50	87%
Copper	mg/kg	102886-85	20  20  RPD:0	102886-50	98%
Lead	mg/kg	102886-85	520  460  RPD:12	102886-50	75%
Mercury	mg/kg	102886-85	0.2  0.2  RPD:0	102886-50	93%
Nickel	mg/kg	102886-85	6  6  RPD:0	102886-50	83%
Zinc	mg/kg	102886-85	230  220  RPD:4	102886-50	109%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		•
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	102886-85	23/12/2013  23/12/2013		
Date analysed	-	102886-85	07/01/2014  07/01/2014		
pH 1:5 soil:water	pH Units	102886-85	8.6  8.3  RPD:4		
Electrical Conductivity 1:5 soil:water	µS/cm	[NT]	[NT]		
Chloride, Cl 1:5 soil:water	mg/kg	[NT]	[NT]		
Sulphate, SO41:5 soil:water	mg/kg	[NT]	[NT]		
Resistivity in soil*	ohm m	[NT]	[NT]		
		•		•	

#### **Report Comments:**

Asbestos in soil:

Note: All samples analysed as received. However, samples 102886-10, 22 & 80 are below the recommended volume of 40-50g (50mL) as per AS4964-2004. This insufficient sample size may lead to inaccurate interpretation of the result as it may not be representative of the sampled area.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 102886-1 for Pb, Ni & Zn. Therefore a triplicate result has been issued as laboratory sample number 102886-99.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 102886-47 for Ni & Zn. Therefore a triplicate result has been issued as laboratory sample number 102886-100.

Acid Extractable Metals in Soil: The laboratory RPD acceptance criteriae has been exceeded for 102886-69 for Zn. Therefore a triplicate result has been issued as laboratory sample number 102886-101.

Asbestos ID was analysed by Approved Identifier:	Paul Ching
Asbestos ID was authorised by Approved Signatory:	Paul Ching

INS: Insufficient sample for this test	PQL: Practical Quantitation Limit	NT: Not tested
NA: Test not required	RPD: Relative Percent Difference	NA: Test not required
<: Less than	>: Greater than	LCS: Laboratory Control Sample

### **Quality Control Definitions**

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

### Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When complete are received where certain analytes are outside of

			ENVIROLAB	ENVIROLAB	SOL		SERVICES												(Env)rolab)
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd		Client	Projec	1 5	Client Project Name and Number:	imber:						En	virol	s qe	Envirolah Services	v	)
Project Mgr.					E13017BEL	BEL								12	Ashle	v St.	hatsv	vood	12 Ashlev St. Chatswood. NSW. 2067
Sampler:	Mccormack	Y		PO No.:	2														
Address:	82 Bridge Street			Envin	lab Se	vices (	Envirolab Services Quote No. :	0						Pho	ne: 0	2 991	Phone: 02 9910 6200	0	
	Lane Cove NSW 2066			Date	esults	Date results required:	÷		Ū					Fax:		12 991	02 9910 6201	T	*
Email:	stephen@geoenvironmental.com.au	iental.com.au		Or ch	s :asoc	tandan	Or choose: standard / 1 day / 2 day / 3 day	y/2d	ay / 3	day				E-n	ail:	ahie@	enviro	plabse	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: Ir applies	nform lat	in advar.	Note: Inform lab in advance if urgent turnaround is required applies	ent turna.	round is	required -			surcharge		tact:	Contact: Aileen Hie	n Hie		
	Sample in	Sample information								Test	Tests Required	lired							Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) slbt9M	хэта\нят	Hq	Combination 3	s£ noitenidmoD	Combination 5	Combination 5a		L noitenidmoD	BTEX	втех / (voi тян	CEC	EC	ulphate/Chloride /pH	Resistivity (Calc)	Provide as much information about the sample as you can
1	SM161213-01	16/12/2013	soil	-		-	T	$\uparrow$	+	+	F		╞		-	$\downarrow$	s	-	
2	SM161213-02	16/12/2013	soil	1						-	-	-	-		-				
3	SM161213-03	16/12/2013	soil	1					-	-	-	-	-		-				
4	SM161213-04	16/12/2013	soil					-		-	-	$\vdash$	-		-	-	1	-	
S	SM161213-05	16/12/2013	soil	1		-				-	-	-			-	-			
0	SM161213-06	16/12/2013	soil	1						-					1	-	1	1	
5	SM161213-07	16/12/2013	soil				-			-	-	-	-					-	
8	SM161213-08	16/12/2013	soil									-	-				1	-	
5	SM161213-09	16/12/2013	soil								-					-	1		
2	SM161213-10	16/12/2013	soil			1			-				-	-	1				ENVIROLAB Envirolab Se
-	SM161213-11	16/12/2013	soil								-								Chatswo
4	SM161213-12	16/12/2013	soil						-		-	-							Job No: 102882
5	SM161213-13	16/12/2013	soil					-		-	-	-							000000
4	SM161213-14	16/12/2013	soil					-		-	-								Time Possing 1. 17 1 UNIO
V	SM161213-15	16/12/2013	soil																Received by: 0 10
16	SM161213-16	16/12/2013	soil			-		-	-	1					-				Temp, Cool/Ambient
17	SM161213-17	16/12/2013	soil						1		-				-				Cooling Conficepack 8-5 L
linquishe	Relinquished by (company):			Receiv	red by	Received by (company):		ELS						Sam	ples Re	ceived	: Cool o	r Amhi	Samples Received: Cool or Amhiant (circle one)
Print Name:	:: S. Mccormack			Print	Print Name:		D.W	weir						Tem	peratu	e Reci	Temperature Recieved at:		(if andicable)
te & Tim	Date & Time: 18-Dec-13 Date & Tim Error 200 Oncired October Street Lower A Manager Meetings	18-Dec-13		Date 8	Date & Time:	61	121/	M	1	00:0	0			Tran	sporte	1 by: H	and de	livered	Transported by: Hand delivered / courier
-partent	- ADDISTINI DI DIEUN - ZOS IIII	XIII I DO DO LOO	Vereion - uoisal				1												

			CHAIN OF CU	L O	S	S	STODY - Client	7	Ū	ent								(Fnvtrolah)
			Ξ	NVIF	OLA	BS	<b>ENVIROLAB SERVICES</b>	CES			(							
Client:	Geo-Environme	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client I	roject	Name	<b>Client Project Name and Number:</b>	nber:						Envir	olab	<b>Envirolab Services</b>	ices	
Project Mgr.	McCormack				E13017BEL	н								<b>12 Asl</b>	nley S	t, Cha	tswood	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack			PO No.:														
Address: 8	82 Bridge Street			Envirol	ab Sen	ices Q	Envirolab Services Quote No. :							Phone	: 02	Phone: 02 9910 6200	200	
	Lane Cove NSW 2066			Date results required:	sults re	auired								Fax:	02	02 9910 6201	5201	
Email: S	stephen@geoenvironmental.com.au	ental.com.au		Or cho	se: st	andard	Or choose: standard / 1 day / 2 day / 3 day	/ 2 day	/ 3 day					E-mai	l: ahi	e@en	virolabs	E-mail: ahie@envirolabservices.com.au
Phone: 0	0431 480 980			Note: Ini applies	orm lab i	n advanc	Note: Inform lab in advance if urgent turnaround is required applies	tumarou.	nd is requ	uired -		ns	surcharge	Conta	ct: Ai	Contact: Aileen Hie	e	
	Sample information	ormation								Tests	Tests Required	pa						Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bf2) elateM	тян/втех	Hq	Combination 3	Combination 3a Combination 5	s2 noitenidmoD	sHAq	OCP/PCB	Combination 1 NEPM	BTEX	втех / (voi ткн	CEC	EC EC	de/pH Resistivity (Calc)	Pro
8	SM161213-18	16/12/2013	soil			F	-		_									
6	SM161213-19	16/12/2013	soil															
20	SM161213-20	16/12/2013	soil	1	1	1												
5	SM161213-21	16/12/2013	soil					_										
22	SM161213-22	16/12/2013	soil			1		1							1		-	
23	SM161213-23	16/12/2013	soil	1	1	1	-	_	_						1			
24	SM161213-24	16/12/2013	soil					_										
25	SM161213-25	16/12/2013	soil									1			1			
26	SM161213-26	16/12/2013	soil													-		
27	SM161213-27	16/12/2013	soil			1		1							1			
28	SM161213-28	16/12/2013	soil	1	1	1									1			
29	SM161213-29	16/12/2013	soil															
30	SM161213-30	16/12/2013	soil				-					1						
3)	SM161213-31	16/12/2013	soil						1							-	_	
25	SM161213-32	16/12/2013	soil														-	
32	SM161213-33	16/12/2013	soil	1		1									-			
34	SM161213-34	16/12/2013	soil							_		1						
Relinquished	Relinquished by (company):			Receiv	Received by (	company):		ELS						Sample	s Rece	ived: C	ool or Am	Samples Received: Cool or Ambient (circle one)
Print Name:	S. Mccormack			Print Name:	lame:		C	. Weir						Tempe	ature	Temperature Recieved at:	id at:	(if applicable)
Date & Time:		18-Dec-13		Date 8	Date & Time:		21/61	2113	3	10:00				Transp	orted b	y: Han	d deliver	Transported by: Hand delivered / courier
				Signature.	.eut		1	1										Jo C .oN aned

			CHAIN OF CU ENVIROLA	<b>NVIE</b>		ST B SE	I OF CUSTODY - ENVIROLAB SERVICES	۲ - CES	ö	STODY - Client B services									Envirolab
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client	roject	Vame a	<b>Client Project Name and Number:</b>	ber:						Envi	rolab	<b>Envirolab Services</b>	ices		
Project Mgr.		L			E13017BEL									12 As	hley S	it, Cha	tswo	od, NSI	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack			PO No.:															
Address:	82 Bridge Street			Enviro	ab Serv	ices Qu	Envirolab Services Quote No.							Phone	a: 02	Phone: 02 9910 6200	1200		
	Lane Cove NSW 2066			Date re	Date results required:	quired:								Fax:	02	02 9910 6201	5201		
Email:	stephen@geoenvironmental.com.au	ental.com.au		Or cho	se: sta	ndard	Or choose: standard / 1 day / 2 day / 3 day	/ 2 day	/ 3 da	٨	5 days	5		E-mai	II: ahi	e@en	virola	bservic	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: In. applies	orm lab ii	i advance	Note: Inform lab in advance if urgent turnaround is required applies	turnarou	nd is req.	uired -		INS	surcharge	Conta	ict: Ai	Contact: Aileen Hie	e		
	Sample information	formation								Tests F	Tests Required	P							Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) sist9M	хэта\нят	Hq	Combination 3	Combination 5	eZ noitenidmoD	RAA	OCP/PCB	Combination 1 MG3N	ХЭТВ	зтех / (voi твн	CEC	EC EC	de/pH de/pH Resistivity	(Salc)	Provide as much information about the sample as you can
35	SM161213-35	16/12/2013	soil		-	1	-	-	-					1		1	-	-	
36	SM161213-36	16/12/2013	soil													$\vdash$	-	-	
37	SM161213-37	16/12/2013	soil																
38	SM161213-38	16/12/2013	soil				-	_									$\vdash$	_	
39	SM161213-39	16/12/2013	soil	1	1	1			_						1		-	-	
40	SM161213-40	16/12/2013	soil																
41	SM161213-41	16/12/2013	soil									1							
42	SM161213-42	16/12/2013	soil									1							
4	SM161213-43	16/12/2013	soil				-											-	
4	SM161213-44	16/12/2013	soil	1		1	_		_						1		-		
\$	SM161213-45	16/12/2013	soil				-	-				1							
46	SM161213-46	16/12/2013	soil																
47	SM161213-47	16/12/2013	soil			1	1												
48	SM161213-49	16/12/2013	soil									1					-	1	
49	SM161213-50	16/12/2013	soil			1	-	1							-		-		
8	SM161213-51	16/12/2013	soil			1	1								1	-			
Relinquishe	Relinquished by (company):			Receiv	Received by (company):	ompan	y): EL	5						Sample	es Rece	ived: C	ool or A	Ambient	Samples Received: Cool or Ambient (circle one)
Print Name:	: S. Mccormack			Print Name:	ame:	1	7. Wei	1						Tempe	rature	Temperature Recieved at:	id at:	U	(if applicable)
Date & Time:		18-Dec-13		Date 8	Date & Time:	-	7/12	113	10	0:00	0			Transp	orted L	vy: Han	d deliv	Transported by: Hand delivered / courier	ourier
							1												

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN UF CU ENVIROLA	I OF CUSIOUY - ENVIROLAB SERVICES	olai	S SE	B SERVIC		Client	Sut								Envirolab
Client:		Geo-Environmental Engineering Pty Ltd	Pty Ltd	<b>Client Project Name and Number:</b>	roject N	ame a	Imn Pu	er:					m.	Envirolab Services	ab S	ervic	es	) ) 
Project Mgr.	McCormack			ш	E13017BEL								-	2 Ashle	ey St,	Chats	poom	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack			PO No.:									٦					
Address:	82 Bridge Street			Envirolab Services Quote No.	b Servi	ug sac	te No.						۵.	Phone: 02 9910 6200	02 99	10 62	00	
	Lane Cove NSW 2066			Date results required	sults red	uired:							<u>u</u>	Fax:	02 99	02 9910 6201	01	
Email:	stephen@geoenvironmental.com.au	ental.com.au		Or choo	se: star	dard /	Or choose: standard / 1 day / 2 day / 3 day	2 day /	3 day		5 days		ú	-mail:	ahie(	penvir	olabs	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: Inform lab in advance if urgent turnaround is required applies	rm lab in	advance	if urgent t	urnaround	t is requi	- pəu		surg	surcharge C	<b>Contact: Aileen Hie</b>	: Aile	an Hie		
	Sample information	ormation							F	ests R	Tests Required							Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) sløteM	тян/втех	Hd	Combination 3 Combination 3a	Combination 5	sz noitsnidmo <b></b>	2HA9	OCP/PCB	Combination 1 MEPM	ХЭТА	втех / (Vol тRH СЕС	EC	inoldO\afe\Chlori Hq\afeb	Resistivity (Calc)	Provide as much information about the sample as you can
SI	SM161213-52	16/12/2013	soil	-	-	-	-								-		1	
S2	SM161213-53	16/12/2013	soil			-								-	-			
3	SM161213-54	16/12/2013	soil			-												
S4	SM161213-55	16/12/2013	soil	1	-	-	_								1		1	
	SM161213-56	16/12/2013	soil	2	t	$\left  \right $	$\left  \right $							$\left  \right $			(	
SS	Trip Blank1	16/12/2013	soil	1		-								1	-	_		
Sp	Trip spike2	16/12/2013	soil															
					_	-						1			-			
					+	+	-	_						+	-	_		
						+	-							+	+	-	-	
															$\left  \right $	$\left  \right $		
						+								-	+	_		
Relinquishe	Relinquished by (company):			Received by (	o) /d pa	company):	0 H	3					S	amples	Receive	d: Cool	or Am	Samples Received: Cool or Ambient (circle one)
Print Name:	: S. Mccormack			Print Name:	ame:		J.H	Neir						Temperature Recieved at:	ure Re	cieved	at:	(if applicable)
Date & Time:		18-Dec-13	Date & Time: 18-Dec-13 Date & Tim	Date & Time:	Time:	-	2112	13	10:	0 C			T	ansport	ed by:	Hand o	lelivere	Transported by: Hand delivered / courier

			CHAIN OF CU	<b>P</b>	5		OD	-	U	STODY - Client									
			Ш	ENVIROL	SOL	<b>AB SERVICES</b>	ERV	CES											CIIVITOIAD
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client	<b>Client Project</b>		Name and Number:	nber:					Γ	Envil	olab	<b>Envirolab Services</b>	rices		
Project Mgr.	. McCormack				E13017BEL	<b>JEL</b>								12 As	hley	St, Che	tswo	od, N	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack			PO No.:									1						
Address:	82 Bridge Street			Enviro	lab Ser	Envirolab Services Quote No.	lote No.							Phone	:: 02	Phone: 02 9910 6200	5200		
	Lane Cove NSW 2066			Date n	esults r	Date results required:								Fax:	02	02 9910 6201	6201		
Email:	stephen@geoenvironmental.com.au	iental.com.au		Or cho	ose: s	Or choose: standard / 1 day / 2 day / 3 day	/ 1 day	/ 2 day	/ 3 da	Å	5 days	S		E-mai	I: ah	ie@en	virola	bserv	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: Ir. applies	form lab	Note: Inform lab in advance if urgent turnaround is required applies	e if urgen	t turnarou	nd is rec	quired -			surcharge	Conta	ct: Ai	Contact: Aileen Hie	ē		
	Sample information	formation								Tests	Tests Required	pa	1						Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) slateM	хэта\нят	Hq	Combination 3	Combination 3a	s2 noitenidmo <b>D</b>		OCP/PCB	Combination 1 NGPM	ХЭТӨ	нят юv) \ хэта	CEC	EC EC	de/pH Resistivity	(ວ)ຄວ)	Provide as much information about the sample as you can
S7	SM171213-60	17/12/2013	soil			-	$\vdash$	-						1	-			t	
SB	SM171213-61	17/12/2013	soil				-	-										-	
59	SM171213-62	17/12/2013	soil					1	L						-		-	$\vdash$	
09	SM171213-63	17/12/2013	soil	1		-									-		-		
19	SM171213-64	17/12/2013	soil			1	-	1							-		-	14	
29	SM171213-65	17/12/2013	soil	1	1		-		_								-	-	
63	SM171213-66	17/12/2013	soil				-											-	
64	SM171213-71	17/12/2013	soil																
65	SM171213-67	17/12/2013	soil			1		1									-	-	
66	SM171213-68	17/12/2013	soil	1		1	-			-					-			-	
67	SM171213-69	17/12/2013	soil				-								T	-		-	
89	SM171213-70	17/12/2013	soil															$\vdash$	
69	SM171213-72	17/12/2013	soil				-	1							-		$\vdash$	+	
70	SM171213-74	17/12/2013	soil	1		1	-			-							-	+	
12	SM171213-75	17/12/2013	soil			-											$\vdash$	-	
24	SM171213-76	17/12/2013	soil	1		1	-			1					-	-	-	-	
273	SM171213-77	17/12/2013	soil			-									T		-	+	
elinquishe	Relinquished by (company):			Receiv	Received by (	company):	y): f	STI					Γ	Sample	s Rece	ived: C	ool or	mbien	Samples Received: Cool or Ambient (circle one)
Print Name:	: S. Mccormack			Print Name:	ame:		-Ne	1						Temper	ature	Temberature Recieved at:	ta t		(if applicable)
Date & Time:		18-Dec-13		Date 8	Date & Time:	19	12	13	1	0:0	00			ranspo	orted b	Transported by: Hand delivered / courier	d deliv	Pred /	(n uppicable) Courier
Sinnatura.																			

			ENVIROLA	ENVIROLA	OLA C	B SERVIC	AB SERVICES	CES	5	ES								Envirolab
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client Project	roject	Name a	Name and Number:	iber:						Envi	olab	Envirolab Services	ices	)
Project Mgr	McCormack	k		Ш	E13017BEL	н								12 As	hley 9	t, Cha	tswoo	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack	×		PO No.:														
Address:	82 Bridge Street			Envirolab Services Quote No.	th Serv	ices Qu	ote No.							Phone	. 02	Phone: 02 9910 6200	200	
	Lane Cove NSW 2066			Date results required:	sults re	equired:								Fax:	02	02 9910 6201	201	
Email:	stephen@geoenvironmental.com.au	iental.com.au		Or choose: standard / 1 day / 2 day / 3 day	se: sta	andard	/ 1 day	/ 2 day	/ 3 da	*	5 days	y)		E-mai	l: ah	e@en	rirolab	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: Inform lab in advance if urgent turnaround is required applies	ırm lab ir	n advance	if urgent	turnarou	nd is req	uired -		sur	surcharge	Conta	ct: Ai	Contact: Aileen Hie	e	
	Sample in	Sample information								Tests I	Tests Required	p						Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) sløt9M	хэта\нят	Hq	Combination 3	Combination 5	së noitenidmo <b>D</b>	sНАЧ	OCP/PCB	Combination 1 MGPM	ХЭТВ	нят юv) \ хэтв	CEC	EC EC	de/pH Resistivity	ି Provide as much information about the sample as you can
74	SM171213-78	17/12/2013	soil	-		1	+		-						-		-	
75	SM171213-79	17/12/2013	soil	1		1	-								-		-	
76	SM171213-80	17/12/2013	soil														-	
44	SM171213-81	17/12/2013	soil			1		1							-			
78	SM171213-82	17/12/2013	soil														-	
R	SM171213-83	17/12/2013	soil	1		1									1		-	
80	SM171213-84	17/12/2013	soil			1	1								1			
108	SM171213-85	17/12/2013	soil				-											
32	SM171213-86	17/12/2013	soil					_										
83	SM171213-87	17/12/2013	soil			1	_	1							1		-	
\$4	SM171213-89	17/12/2013	soil			1									1		-	
35	SM171213-90	17/12/2013	soil			-									1			
86	SM171213-91	17/12/2013	soil					_										
87	SM171213-92	17/12/2013	soil			1	-	1							-	1	-	
88	SM171213-93	17/12/2013	soil				1		_								-	
68	SM171213-94	17/12/2013	soil	1			-								-	1	-	1
Relinquish	Relinquished by (company):			Received by (		company):	N:	573					Γ	Sample	s Rece	ived: Co	ol or An	Samples Received: Cool or Ambient (circle one)
Print Name:	: S. Mccormack	k		Print Name:		H	·We	5						Tempe	rature	Temperature Recieved at:	d at:	(if applicable)
Date & Time:		18-Dec-13		Date & Time:	Time:	0	121	2	2	0:0				Transp	orted t	y: Han	delive	Transported by: Hand delivered / courier
Ciambérnoi																		

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN OF CU	OF	2	ST	00	-	Ū	STODY - Client								9	
			ш	<b>ENVIROLAB SERVICES</b>	SOL	<b>NB SI</b>	ERVJ	ICES											CIIV/rolad)
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client	<b>Client Project</b>	Name and Number:	INN PUE	nber:	Ľ				Γ	Envi	rolat	Envirolab Services	ces		
Project Mgr.	McCormack				E13017BEL	ц								12 As	hlev	St. Cha	SWOO	12 Ashlev St. Chatswood, NSW, 2067	2067
Sampler:	Mccormack	y		PO No.:									Γ						
Address:	82 Bridge Street			Enviro	ab Sen	Envirolab Services Quote No. :	iote No							Phone	02	Phone: 02 9910 6200	200		
	Lane Cove NSW 2066			Date n	ssults n	Date results required								Fax:	02	02 9910 6201	201		
Email:	stephen@geoenvironmental.com.au	iental.com.au		Or cho	ose: st	Or choose: standard / 1 day / 2 day / 3 day	/ 1 day	/ 2 day	1/3 da	Å	5 days	şa		E-mai	l: ah	e@env	irolat	E-mail: ahie@envirolabservices.com.au	com.au
Phone:	0431 480 980			Note: In applies	form lab	Note: Inform lab in advance if urgent turnaround is required applies	e if urgen	t turnarou	ind is rec	- Juired -			surcharge	Conta	ct: A	Contact: Aileen Hie	đ		
	Sample information	formation								Tests	Tests Required	p	1						Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	(8 bt2) sl6t9M	тян/втех	Hq	Combination 3	Combination 3a	se noitenidmoC	SHA9	OCP/PCB	Combination 1 MEPM	ХЭТВ	нят іоv) \ хэта	CEC	EC EC	de/pH Resistivity	Sam no sam no sanc sanc sanc sanc sanc sanc sanc sanc	Provide as much information about the sample as you can
00	SM171213-95	17/12/2013	soil			+	-	-							-	-	-	-	
4	SM171213-96	17/12/2013	soil	1		-		-							-	-	-		
26	SM171213-97	17/12/2013	soil				-	-	-						1-	1-		+ +-	
603	SM171213-98	17/12/2013	soil				-	-	-						•	-	-	-	
44	SM171213-99	17/12/2013	soil				-		-					T	T	-	-	-	
95	Trip blank2	17/12/2013	soil				-	-						-	T	-	-		
96	Trip spike 2	17/12/2013	soil										-		T	-	+		
47	Rinsate 1	17/12/2013	water				1	-								+	+		
00	Rinsate 2 (extra															-	-		
							+	+	_								+		
							+	++	-					$\square$	$\square$	+	+		
							+									++	++		
elinquishe	Relinquished by (company):			Receiv	ed by (	Received by (company):	N: 1	Si						Sample	s Rece	ived: Co	ol or Ar	Samples Received: Cool or Amhient (circle one)	a nna)
Print Name:	S. Mccormack			Print Name:	ame:		Quh	101					Γ	Tempe	ature	Temperature Recieved at:	1	lif an	(circle offe)
Date & Time:	ä	18-Dec-13		Date & Time:	Time:	D	211	2		9	00:			Transp	orted b	y: Hand	delive	Transported by: Hand delivered / courier	r f
Signature:				Signature:	ire:		9											Bane Mar 7 at	



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 enquiries@envirolabservices.com.au www.envirolabservices.com.au

#### CERTIFICATE OF ANALYSIS

103178

Client: Geo-Environmental Engineering 82 Bridge St

Lane Cove NSW 2066

Attention: Steve McCormack

#### Sample log in details:

Your Reference: No. of samples: Date samples received / completed instructions received E13017BEL 30 Soils, 1 Water 07/01/14 / 07/01/14

### Analysis Details:

Please refer to the following pages for results, methodology summary and quality control data. Samples were analysed as received from the client. Results relate specifically to the samples as received. Results are reported on a dry weight basis for solids and on an as received basis for other matrices. *Please refer to the last page of this report for any comments relating to the results.* 

#### **Report Details:**

 Date results requested by: / Issue Date:
 14/01/14
 / 13/01/14

 Date of Preliminary Report:
 Not issued

 NATA accreditation number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025.

Tests not covered by NATA are denoted with *.

### **Results Approved By:**

Jacinta Hurst

Laboratory Manager



### Client Reference: E13017BEL

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	103178-1	103178-2	103178-3	103178-5	103178-7
Your Reference		SM060114-80	SM060114-81	SM060114-82	SM060114-84	SM060114-86
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
<b>TRHC6 - C10</b>	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	98	104	104	96	97

vTRH(C6-C10)/BTEXN in Soil						
Our Reference:	UNITS	103178-10	103178-11	103178-13	103178-15	103178-17
Your Reference		SM060114-89	SM060114-90	SM060114-93	SM060114-96	SM060114-98
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
TRHC6 - C9	mg/kg	<25	<25	<25	<25	<25
TRHC6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	92	101	102	99	96

vTRH(C6-C10)/BTEXNin Soil Our Reference: Your Reference Date Sampled Type of sample	UNITS	103178-18 SM060114-99 06/01/2014 Soil	103178-20 Trip Blank 2 06/01/2014 Soil	103178-21 Trip Spike 2 06/01/2014 Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014
TRHC6 - C9	mg/kg	<25	<25	[NA]
TRHC6 - C10	mg/kg	<25	<25	[NA]
vTPHC6 - C 10 less BTEX (F1)	mg/kg	<25	<25	[NA]
Benzene	mg/kg	<0.2	<0.2	111%
Toluene	mg/kg	<0.5	<0.5	111%
Ethylbenzene	mg/kg	<1	<1	111%
m+p-xylene	mg/kg	<2	<2	111%
o-Xylene	mg/kg	<1	<1	112%
naphthalene	mg/kg	<1	<1	[NA]
Surrogate aaa-Trifluorotoluene	%	96	105	110

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	103178-1	103178-2	103178-3	103178-5	103178-7
Your Reference		SM060114-80	SM060114-81	SM060114-82	SM060114-84	SM060114-86
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
TRHC 10 - C 14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	100	<100	<100	<100
TRHC 29 - C36	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	160	110	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	93	98	95	90	93

svTRH (C10-C40) in Soil						
Our Reference:	UNITS	103178-10	103178-11	103178-13	103178-15	103178-17
Your Reference		SM060114-89	SM060114-90	SM060114-93	SM060114-96	SM060114-98
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
TRHC 10 - C14	mg/kg	<50	<50	<50	<50	<50
TRHC 15 - C28	mg/kg	<100	<100	<100	<100	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH>C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH>C16-C34	mg/kg	<100	<100	<100	<100	<100
TRH>C34-C40	mg/kg	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	91	91	93	91	93

svTRH (C10-C40) in Soil		
Our Reference:	UNITS	103178-18
Your Reference		SM060114-99
Date Sampled		06/01/2014
Type of sample		Soil
Date extracted	-	08/01/2014
Date analysed	-	08/01/2014
TRHC 10 - C14	mg/kg	<50
TRHC 15 - C28	mg/kg	<100
TRHC ₂₉ - C ₃₆	mg/kg	<100
TRH>C10-C16	mg/kg	<50
TRH>C10 - C16 less Naphthalene (F2)	mg/kg	<50
TRH>C16-C34	mg/kg	<100
TRH>C34-C40	mg/kg	<100
Surrogate o-Terphenyl	%	93

PAHs in Soil						
Our Reference:	UNITS	103178-1	103178-2	103178-3	103178-5	103178-7
Your Reference		SM060114-80	SM060114-81	SM060114-82	SM060114-84	SM060114-86
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	0.4	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	0.22	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	NIL(+)VE	NIL(+)VE	2.3	NIL(+)VE
Surrogate p-Terphenyl-d14	%	88	89	90	90	90

PAHs in Soil						
Our Reference:	UNITS	103178-11	103178-13	103178-15	103178-17	103178-18
Your Reference		SM060114-90	SM060114-93	SM060114-96	SM060114-98	SM060114-99
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	0.9	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	0.8	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	0.4	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	0.5	<0.1	<0.1	<0.1
Benzo(b+k)fluoranthene	mg/kg	<0.2	0.8	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	0.45	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	0.3	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ NEPM B1	mg/kg	<0.5	1	<0.5	<0.5	<0.5
Total +ve PAH's	mg/kg	NIL(+)VE	4.8	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	92	94	88	91	96

Organochlorine Pesticides in soil					
Our Reference:	UNITS	103178-2	103178-8	103178-11	103178-18
Your Reference		SM060114-81	SM060114-87	SM060114-90	SM060114-99
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014
HCB	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	82	82	81	82

## Client Reference: E13017BEL

PCBs in Soil					
Our Reference:	UNITS	103178-2	103178-8	103178-11	103178-18
Your Reference		SM060114-81	SM060114-87	SM060114-90	SM060114-99
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Arochlor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Arochlor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	82	82	81	82

Acid Extractable metals in soil						
Our Reference:	UNITS	103178-1	103178-2	103178-3	103178-4	103178-5
Your Reference		SM060114-80	SM060114-81	SM060114-82	SM060114-83	SM060114-84
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Arsenic	mg/kg	4	<4	<4	<4	8
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	50	5	4	6	18
Copper	mg/kg	15	33	49	18	23
Lead	mg/kg	11	220	180	10	45
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
Nickel	mg/kg	37	3	3	1	5
Zinc	mg/kg	27	10	16	17	120
			1	1	1	
Acid Extractable metals in soil						
Our Reference:	UNITS	103178-7	103178-8	103178-10	103178-11	103178-12

Acid Extractable metals in soil						
Our Reference:	UNITS	103178-7	103178-8	103178-10	103178-11	103178-12
Your Reference		SM060114-86	SM060114-87	SM060114-89	SM060114-90	SM060114-92
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Datedigested	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Arsenic	mg/kg	9	5	5	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	20	2	10	5	5
Copper	mg/kg	19	5	12	18	13
Lead	mg/kg	14	<1	320	14	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	4	1	2
Zinc	mg/kg	15	2	150	11	13

Acid Extractable metals in soil						
Our Reference:	UNITS	103178-13	103178-14	103178-15	103178-17	103178-18
Your Reference		SM060114-93	SM060114-94	SM060114-96	SM060114-98	SM060114-99
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date digested	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Arsenic	mg/kg	<4	7	<4	6	7
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	180	29	9	16	11
Copper	mg/kg	45	29	13	23	26
Lead	mg/kg	6,000	350	16	16	14
Mercury	mg/kg	0.2	0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	7	6	4	3	2
Zinc	mg/kg	120	110	11	21	24

Acid Extractable metals in soil			
Our Reference:	UNITS	103178-19	103178-31
Your Reference		SM060114-	SM060114-95
		100	
Date Sampled		06/01/2014	06/01/2014
Type of sample		Soil	soil
Date digested	-	09/01/2014	09/01/2014
Date analysed	-	09/01/2014	09/01/2014
Arsenic	mg/kg	6	9
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	11	21
Copper	mg/kg	32	20
Lead	mg/kg	13	35
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	2	3
Zinc	mg/kg	26	15

## Client Reference: E13017BEL

Moisture						
Our Reference:	UNITS	103178-1	103178-2	103178-3	103178-4	103178-5
Your Reference		SM060114-80	SM060114-81	SM060114-82	SM060114-83	SM060114-84
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Moisture	%	9.3	6.3	7.8	21	18
Moisture						
Our Reference:	UNITS	103178-7	103178-8	103178-10	103178-11	103178-12
Your Reference		SM060114-86	SM060114-87	SM060114-89	SM060114-90	SM060114-92
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Moisture	%	28	8.4	13	18	18
	· · · · · · · · · · · · · · · · · · ·					
Moisture						
Our Reference:	UNITS	103178-13	103178-14	103178-15	103178-17	103178-18
Your Reference		SM060114-93	SM060114-94	SM060114-96	SM060114-98	SM060114-99

Our Reference:	UNITS	103178-13	103178-14	103178-15	103178-17	103178-18
Your Reference		SM060114-93	SM060114-94	SM060114-96	SM060114-98	SM060114-99
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Moisture	%	13	30	24	25	21

Moisture			
Our Reference:	UNITS	103178-19	103178-31
Your Reference		SM060114-	SM060114-95
		100	
Date Sampled		06/01/2014	06/01/2014
Type of sample		Soil	soil
Date prepared	-	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014
Moisture	%	22	30

## Client Reference: E13017BEL

Asbestos ID - soils				
Our Reference:	UNITS	103178-2	103178-11	103178-15
Your Reference		SM060114-81	SM060114-90	SM060114-96
Date Sampled		06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil
Date analysed	-	9/01/2014	9/01/2014	9/01/2014
Sample mass tested	g	Approx 40g	Approx 40g	Approx 40g
Sample Description	-	Grey coarse- grained soil & rocks	Mustard coarse- grained clayey soil	Brown fine- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
Trace Analysis	-	No respirable fibres detected	No respirable fibres detected	No respirable fibres detected

E13017BEL	
-----------	--

ESP/CEC						
Our Reference:	UNITS	103178-1	103178-2	103178-4	103178-5	103178-7
Your Reference		SM060114-80	SM060114-81	SM060114-83	SM060114-84	SM060114-86
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	27	100	6.5	4.1	1.3
Exchangeable K	meq/100g	0.3	1.7	0.7	0.99	0.4
ExchangeableMg	meq/100g	0.44	0.32	5.8	1.9	1.5
ExchangeableNa	meq/100g	0.24	0.93	0.82	0.23	0.26
Cation Exchange Capacity	meq/100g	28	106	14	7.2	3.4

ESP/CEC						
Our Reference:	UNITS	103178-8	103178-10	103178-11	103178-12	103178-13
Your Reference		SM060114-87	SM060114-89	SM060114-90	SM060114-92	SM060114-93
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Exchangeable Ca	meq/100g	19	32	5.7	0.7	5.7
ExchangeableK	meq/100g	0.1	0.7	0.6	0.3	0.1
ExchangeableMg	meq/100g	1.3	1.2	2.8	2.0	0.10
ExchangeableNa	meq/100g	0.16	0.21	1.0	0.86	<0.1
Cation Exchange Capacity	meg/100g	21	34	10	3.9	5.9

ESP/CEC						
Our Reference:	UNITS	103178-14	103178-15	103178-17	103178-18	103178-19
Your Reference		SM060114-94	SM060114-96	SM060114-98	SM060114-99	SM060114- 100
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
ExchangeableCa	meq/100g	33	3.0	1	2.5	2.4
Exchangeable K	meq/100g	1.2	0.5	0.3	0.5	0.5
ExchangeableMg	meq/100g	2.3	1.4	2.9	2.9	3.6
ExchangeableNa	meq/100g	0.62	0.72	1.2	0.92	1.1
Cation Exchange Capacity	meq/100g	37	5.6	5.3	6.8	7.6

ESP/CEC		
Our Reference:	UNITS	103178-31
Your Reference		SM060114-95
Date Sampled		06/01/2014
Type of sample		soil
Exchangeable Ca	meq/100g	2.8
Exchangeable K	meq/100g	0.4
Exchangeable Mg	meq/100g	1.2
ExchangeableNa	meq/100g	0.33
Cation Exchange Capacity	meq/100g	4.8

#### **Client Reference:** E13017BEL

UNITS	103178-1 SM060114-80	103178-2 SM060114-81	103178-4	103178-5	103178-7
	SM060114-80	SM060114-81			
			SM060114-83	SM060114-84	SM060114-86
	06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
	Soil	Soil	Soil	Soil	Soil
-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
pHUnits	9.0	11.5	5.2	5.0	4.9
	-	- 08/01/2014 - 08/01/2014	- 08/01/2014 08/01/2014 - 08/01/2014 08/01/2014	- 08/01/2014 08/01/2014 08/01/2014 - 08/01/2014 08/01/2014 08/01/2014	-         08/01/2014         08/01/2014         08/01/2014         08/01/2014           -         08/01/2014         08/01/2014         08/01/2014         08/01/2014

	Miscellaneous Inorg - soil							
	Our Reference:	UNITS	103178-8	103178-10	103178-11	103178-12	103178-13	
	Your Reference		SM060114-87	SM060114-89	SM060114-90	SM060114-92	SM060114-93	
	Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014	
	Type of sample		Soil	Soil	Soil	Soil	Soil	
ľ	Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014	
	Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014	
	pH 1:5 soil:water	pH Units	9.7	8.8	5.7	5.6	8.8	

Miscellaneous Inorg - soil						
Our Reference:	UNITS	103178-14	103178-15	103178-17	103178-18	103178-19
Your Reference		SM060114-94	SM060114-96	SM060114-98	SM060114-99	SM060114- 100
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
pH 1:5 soil:water	pHUnits	7.8	6.6	4.9	5.0	4.7

Miscellaneous Inorg - soil		
Our Reference:	UNITS	103178-31
Your Reference		SM060114-95
Date Sampled		06/01/2014
Type of sample		soil
Date prepared	-	08/01/2014
Date analysed	-	08/01/2014
pH 1:5 soil:water	pH Units	4.8

VOCs in water						
Our Reference:	UNITS	103178-22	103178-23	103178-24	103178-25	103178-26
Your Reference		SM060114-	SM060114-	SM060114-	SM060114-	SM060114-
		101	102	103	104	105
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Date extracted	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
Dichlorodifluoromethane	µg/L	<10	<10	<10	<10	<10
Chloromethane	µg/L	<10	<10	<10	<10	<10
Vinyl Chloride	µg/L	<10	<10	<10	<10	<10
Bromomethane	µg/L	<10	<10	<10	<10	<10
Chloroethane	µg/L	<10	<10	<10	<10	<10
Trichlorofluoromethane	µg/L	<10	<10	<10	<10	<10
1,1-Dichloroethene	µg/L	<1	<1	<1	<1	<1
Trans-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
1,1-dichloroethane	µg/L	<1	<1	<1	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1	<1	<1	<1
Bromochloromethane	µg/L	<1	<1	<1	<1	<1
Chloroform	µg/L	<1	<1	<1	<1	1
2,2-dichloropropane	µg/L	<1	<1	<1	<1	<1
1,2-dichloroethane	µg/L	<1	<1	<1	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1	<1	<1	<1
1,1-dichloropropene	µg/L	<1	<1	<1	<1	<1
Cyclohexane	µg/L	<1	<1	<1	<1	<1
Carbon tetrachloride	µg/L	<1	<1	<1	<1	<1
Benzene	µg/L	<1	<1	<1	<1	<1
Dibromomethane	µg/L	<1	<1	<1	<1	<1
1,2-dichloropropane	µg/L	<1	<1	<1	<1	<1
Trichloroethene	µg/L	<1	<1	<1	<1	<1
Bromodichloromethane	µg/L	<1	<1	<1	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1	<1	<1	<1
1,1,2-trichloroethane	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
1,3-dichloropropane	μg/L	<1	<1	<1	<1	<1
Dibromochloromethane	μg/L	<1	<1	<1	<1	<1
1,2-dibromoethane	μg/L	<1	<1	<1	<1	<1
Tetrachloroethene	μg/L	<1	<1	<1	<1	<1
1,1,1,2-tetrachloroethane	μg/L	<1	<1	<1	<1	<1
Chlorobenzene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
Bromoform	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
Styrene	⊧-9-− μg/L	<1	<1	<1	<1	<1
1,1,2,2-tetrachloroethane	µg/L	<1	<1	<1	<1	<1
o-xylene	μg/L	<1	<1	<1	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1	<1	<1	<1
1,2,0 110100100000	r∀'⊏					

VOCs in water Our Reference:	UNITS	103178-22	103178-23	103178-24	103178-25	103178-26
Your Reference		SM060114- 101	SM060114- 102	SM060114- 103	SM060114- 104	SM060114 105
DateSampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Isopropylbenzene	µg/L	<1	<1	<1	<1	<1
Bromobenzene	μg/L	<1	<1	<1	<1	<1
n-propyl benzene	µg/L	<1	<1	<1	<1	<1
2-chlorotoluene	µg/L	<1	<1	<1	<1	<1
4-chlorotoluene	µg/L	<1	<1	<1	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
Tert-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1	<1	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
Sec-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
4-isopropyl toluene	µg/L	<1	<1	<1	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1	<1	<1	<1
n-butyl benzene	µg/L	<1	<1	<1	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1	<1	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Hexachlorobutadiene	µg/L	<1	<1	<1	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	107	115	119	119	126
Surrogate toluene-d8	%	95	93	94	94	93
Surrogate 4-BFB	%	77	76	79	74	74

VOCs in water Our Reference:	UNITS	103178-27	103178-28
Your Reference		SM060114-	SM060114-
		106	107
Date Sampled		06/01/2014	06/01/2014
Type of sample		water	water
Date extracted	-	07/01/2014	07/01/2014
Date analysed	-	07/01/2014	07/01/2014
Dichlorodifluoromethane	μg/L	<10	<10
Chloromethane	μg/L	<10	<10
Vinyl Chloride	μg/L	<10	<10
Bromomethane	µg/L	<10	<10
Chloroethane	µg/L	<10	<10
Trichlorofluoromethane	µg/L	<10	<10
1,1-Dichloroethene	µg/L	<1	<1
Trans-1,2-dichloroethene	μg/L	<1	<1
1,1-dichloroethane	μg/L	<1	<1
Cis-1,2-dichloroethene	µg/L	<1	<1
Bromochloromethane	µg/L	<1	<1
Chloroform	µg/L	1	1
2,2-dichloropropane	µg/L	<1	<1
1,2-dichloroethane	µg/L	<1	<1
1,1,1-trichloroethane	µg/L	<1	<1
1,1-dichloropropene	µg/L	<1	<1
Cyclohexane	µg/L	<1	<1
Carbon tetrachloride	µg/L	<1	<1
Benzene	µg/L	<1	<1
Dibromomethane	µg/L	<1	<1
1,2-dichloropropane	µg/L	<1	<1
Trichloroethene	µg/L	<1	<1
Bromodichloromethane	µg/L	<1	<1
trans-1,3-dichloropropene	µg/L	<1	<1
cis-1,3-dichloropropene	µg/L	<1	<1
1,1,2-trichloroethane	µg/L	<1	<1
Toluene	µg/L	<1	<1
1,3-dichloropropane	µg/L	<1	<1
Dibromochloromethane	µg/L	<1	<1
1,2-dibromoethane	µg/L	<1	<1
Tetrachloroethene	µg/L	<1	<1
1,1,1,2-tetrachloroethane	µg/L	<1	<1
Chlorobenzene	µg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
Bromoform	μg/L	<1	<1
m+p-xylene	μg/L	<2	<2
Styrene	μg/L	<1	<1
1,1,2,2-tetrachloroethane	μg/L	<1	<1
o-xylene	μg/L	<1	<1
1,2,3-trichloropropane	μg/L	<1	<1
.,_,	r- 67		

VOCs in water			
Our Reference:	UNITS	103178-27	103178-28
Your Reference		SM060114-	SM060114-
		106	107
Date Sampled		06/01/2014	06/01/2014
Type of sample		water	water
Isopropylbenzene	µg/L	<1	<1
Bromobenzene	µg/L	<1	<1
n-propyl benzene	µg/L	<1	<1
2-chlorotoluene	µg/L	<1	<1
4-chlorotoluene	µg/L	<1	<1
1,3,5-trimethyl benzene	µg/L	<1	<1
Tert-butyl benzene	µg/L	<1	<1
1,2,4-trimethyl benzene	µg/L	<1	<1
1,3-dichlorobenzene	µg/L	<1	<1
Sec-butyl benzene	µg/L	<1	<1
1,4-dichlorobenzene	µg/L	<1	<1
4-isopropyl toluene	µg/L	<1	<1
1,2-dichlorobenzene	µg/L	<1	<1
n-butyl benzene	µg/L	<1	<1
1,2-dibromo-3-chloropropane	µg/L	<1	<1
1,2,4-trichlorobenzene	µg/L	<1	<1
Hexachlorobutadiene	µg/L	<1	<1
1,2,3-trichlorobenzene	µg/L	<1	<1
Surrogate Dibromofluoromethane	%	128	130
Surrogate toluene-d8	%	91	92
Surrogate 4-BFB	%	76	75

vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	103178-6	103178-22	103178-23	103178-24	103178-25
Your Reference		R2	SM060114-	SM060114-	SM060114-	SM060114
			101	102	103	104
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Date extracted	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
TRHC6 - C9	μg/L	[NA]	<10	<10	<10	<10
TRHC6 - C10	μg/L	[NA]	<10	<10	<10	<10
TRHC6 - C10 less BTEX (F1)	μg/L	[NA]	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	[NA]	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	114	107	115	119	119
Surrogate toluene-d8	%	99	95	93	94	94
Surrogate 4-BFB	%	88	77	76	79	74
vTRH(C6-C10)/BTEXN in Water						
Our Reference:	UNITS	103178-26	103178-27	103178-28	103178-29	103178-30
Your Reference		SM060114- 105	SM060114- 106	SM060114- 107	Trip Spike	Trip Blank
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/201
		00/01/2014	1 00/01/2014	00/01/2014		

Date Sampled Type of sample		06/01/2014 water	06/01/2014 water	06/01/2014 water	06/01/2014 water	06/01/2014 water
Date extracted	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
Date analysed	-	07/01/2014	07/01/2014	07/01/2014	07/01/2014	07/01/2014
TRHC6 - C9	µg/L	<10	<10	<10	[NA]	<10
TRHC6 - C10	µg/L	<10	<10	<10	[NA]	<10
TRHC6 - C10 less BTEX (F1)	µg/L	<10	<10	<10	[NA]	<10
Benzene	µg/L	<1	<1	<1	82%	<1
Toluene	µg/L	<1	<1	<1	92%	<1
Ethylbenzene	µg/L	<1	<1	<1	98%	<1
m+p-xylene	µg/L	<2	<2	<2	101%	<2
o-xylene	µg/L	<1	<1	<1	100%	<1
Naphthalene	µg/L	<1	<1	<1	[NA]	<1
Surrogate Dibromofluoromethane	%	126	128	130	105	113
Surrogate toluene-d8	%	93	91	92	100	99
Surrogate 4-BFB	%	74	76	75	104	90

svTRH (C10-C40) in Water						
Our Reference:	UNITS	103178-22	103178-23	103178-24	103178-25	103178-26
Your Reference		SM060114-	SM060114-	SM060114-	SM060114-	SM060114-
		101	102	103	104	105
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
TRHC 10 - C14	μg/L	<50	<50	<50	<50	<50
TRHC 15 - C28	μg/L	<100	<100	<100	<100	<100
TRHC29 - C36	μg/L	<100	<100	<100	<100	<100
TRH>C10 - C16	µg/L	<50	<50	<50	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH>C16 - C34	μg/L	<100	<100	<100	<100	<100
TRH>C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	103	104	104	107	90

svTRH (C10-C40) in Water			
Our Reference:	UNITS	103178-27	103178-28
Your Reference		SM060114-	SM060114-
		106	107
Date Sampled		06/01/2014	06/01/2014
Type of sample		water	water
Date extracted	-	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014
TRHC 10 - C14	µg/L	<50	<50
TRHC 15 - C28	µg/L	<100	<100
TRHC ₂₉ - C ₃₆	µg/L	<100	<100
TRH>C10 - C16	µg/L	<50	<50
TRH>C10 - C16 less Naphthalene (F2)	µg/L	<50	<50
TRH>C16 - C34	µg/L	<100	<100
TRH>C34 - C40	µg/L	<100	<100
Surrogate o-Terphenyl	%	94	116

PAHs in Water						
Our Reference:	UNITS	103178-22	103178-23	103178-24	103178-25	103178-26
Your Reference		SM060114-	SM060114-	SM060114-	SM060114-	SM060114-
		101	102	103	104	105
Date Sampled		06/01/2014	06/01/2014 water	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Date extracted	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014	09/01/2014	09/01/2014	09/01/2014
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b+k)fluoranthene	µg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	96	86	98	102	90

PAHs in Water			
Our Reference:	UNITS	103178-27	103178-28
Your Reference		SM060114-	SM060114-
		106	107
Date Sampled		06/01/2014	06/01/2014
Type of sample		water	water
Date extracted	-	08/01/2014	08/01/2014
Date analysed	-	09/01/2014	09/01/2014
Naphthalene	µg/L	<1	<1
Acenaphthylene	µg/L	<1	<1
Acenaphthene	µg/L	<1	<1
Fluorene	µg/L	<1	<1
Phenanthrene	µg/L	<1	<1
Anthracene	µg/L	<1	<1
Fluoranthene	µg/L	<1	<1
Pyrene	µg/L	<1	<1
Benzo(a)anthracene	µg/L	<1	<1
Chrysene	µg/L	<1	<1
Benzo(b+k)fluoranthene	µg/L	<2	<2
Benzo(a)pyrene	µg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5
Total +ve PAH's	µg/L	NIL(+)VE	NIL(+)VE
Surrogate p-Terphenyl-d14	%	94	104
# **Client Reference:**

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

E13017BEL

HM in water - dissolved						
Our Reference:	UNITS	103178-6	103178-22	103178-23	103178-24	103178-25
Your Reference		R2	SM060114-	SM060114-	SM060114-	SM060114-
			101	102	103	104
Date Sampled		06/01/2014	06/01/2014	06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water	water	water
Date prepared	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014	08/01/2014	08/01/2014
Arsenic-Dissolved	µg/L	<1	1	1	2	3
Cadmium-Dissolved	µg/L	<0.1	1.3	1.3	0.7	2.6
Chromium-Dissolved	µg/L	<1	1	<1	3	1
Copper-Dissolved	µg/L	<1	1	1	6	4
Lead-Dissolved	µg/L	<1	<1	<1	<1	2
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	75	74	61	330
Zinc-Dissolved	µg/L	<1	150	150	210	850
		1	1		1	
HM in water - dissolved						
Our Reference:	UNITS	103178-26	103178-27	103178-28		
Your Reference		SM060114- 105	SM060114- 106	SM060114- 107		
Date Sampled		06/01/2014	06/01/2014	06/01/2014		
Type of sample		water	water	water		
		water				
Date prepared	-	08/01/2014	08/01/2014	08/01/2014		
Date analysed	-	08/01/2014	08/01/2014	08/01/2014		
Arsenic-Dissolved	µg/L	1	<1	1		
	1	1	1	1	1	

5.0

1

2

<1

< 0.05

200

190

5.6

6

2

<1

<0.05

93

320

1.7

2

5

1

<0.05

52

140

Cadmium-Dissolved

Chromium-Dissolved

Copper-Dissolved

Lead-Dissolved

Mercury-Dissolved

Nickel-Dissolved

Zinc-Dissolved

# Client Reference: E13

Miscellaneous Inorganics				
Our Reference:	UNITS	103178-22	103178-24	103178-28
Your Reference		SM060114-	SM060114-	SM060114-
		101	103	107
Date Sampled		06/01/2014	06/01/2014	06/01/2014
Type of sample		water	water	water
Date prepared	-	08/01/2014	08/01/2014	08/01/2014
Date analysed	-	08/01/2014	08/01/2014	08/01/2014
рН	pHUnits	6.8	6.2	7.1
Electrical Conductivity	µS/cm	16,000	5,500	13,000
Chloride, Cl	mg/L	4,500	1,100	3,300
Sulphate, SO4	mg/L	1,000	700	890
Hardness	mgCaCO3 /L	1,600	260	1,200
Coloium Dissoluted	, _	57	22	67
Calcium - Dissolved	mg/L	57	33	57
Magnesium - Dissolved	mg/L	350	44	250

# Client Reference: E13017BEL

MethodID	Methodology Summary
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note Naphthalene is determined from the VOC analysis.
Org-012 subset	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Metals-020 ICP- AES	Determination of various metals by ICP-AES.
Metals-021 CV- AAS	Determination of Mercury by Cold Vapour AAS.
Inorg-008	Moisture content determined by heating at 105+/-5 deg C for a minimum of 12 hours.
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Metals-009	Determination of exchangeable cations and cation exchange capacity in soil based on Rayment and Lyons 2011.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA 22nd ED, 4500-H+.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Metals-022 ICP-MS	Determination of various metals by ICP-MS.
Inorg-002	Conductivity and Salinity - measured using a conductivity cell and dedicated meter, in accordance with APHA 22nd ED 2510 and Rayment & Lyons.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA 22nd ED, 4110 -B.

QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
vTRH(C6-C10)/BTEXNin Soil						Base II Duplicate II % RPD		
Date extracted	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
Date analysed	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
TRHC6 - C9	mg/kg	25	Org-016	<25	103178-2	<25  <25	LCS-2	79%
TRHC6 - C10	mg/kg	25	Org-016	<25	103178-2	<25  <25	LCS-2	79%
Benzene	mg/kg	0.2	Org-016	<0.2	103178-2	<0.2  <0.2	LCS-2	79%
Toluene	mg/kg	0.5	Org-016	<0.5	103178-2	<0.5  <0.5	LCS-2	75%
Ethylbenzene	mg/kg	1	Org-016	<1	103178-2	<1  <1	LCS-2	75%
m+p-xylene	mg/kg	2	Org-016	~2	103178-2	<2  <2	LCS-2	83%
o-Xylene	mg/kg	1	Org-016	<1	103178-2	<1  <1	LCS-2	83%
naphthalene	mg/kg	1	Org-014	<1	103178-2	<1  <1	[NR]	[NR]
<i>Surrogate</i> aaa- Trifluorotoluene	%		Org-016	118	103178-2	104  101  RPD:3	LCS-2	105%
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
					Sm#			Recovery
svTRH (C10-C40) in Soil						Base II Duplicate II % RPD		
Date extracted	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
Date analysed	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
TRHC 10 - C14	mg/kg	50	Org-003	<50	103178-2	<50  <50	LCS-2	108%
TRHC 15 - C28	mg/kg	100	Org-003	<100	103178-2	100  <100	LCS-2	94%
TRHC29 - C36	mg/kg	100	Org-003	<100	103178-2	<100  <100	LCS-2	82%
TRH>C10-C16	mg/kg	50	Org-003	<50	103178-2	<50  <50	LCS-2	108%
TRH>C16-C34	mg/kg	100	Org-003	<100	103178-2	160  130  RPD:21	LCS-2	94%
TRH>C34-C40	mg/kg	100	Org-003	<100	103178-2	<100  <100	LCS-2	82%
Surrogate o-Terphenyl	%		Org-003	92	103178-2	98  94  RPD:4	LCS-2	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
PAHs in Soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
Date analysed	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-2	08/01/2014
Naphthalene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	94%
Acenaphthylene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	96%
Phenanthrene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	100%
Anthracene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	95%

-			ent Referenc	1	13017BEL	I	I	-
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Soil						Base II Duplicate II % RPD		
Pyrene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	101%
Benzo(a)anthracene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	LCS-2	97%
Benzo(b+k)fluoranthene	mg/kg	0.2	Org-012 subset	<0.2	103178-2	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	0.05	Org-012 subset	<0.05	103178-2	<0.05  <0.05	LCS-2	105%
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012 subset	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	89	103178-2	89  89  RPD:0	LCS-2	92%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate	Duplicate results	Spike Sm#	Spike %
Organochlorine Pesticides in soil					Sm#	Base II Duplicate II % RPD		Recovery
Date extracted	-			08/01/2	103178-2	08/01/2014  08/01/2014	LCS-1	08/01/2014
				014				
Date analysed	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-1	08/01/2014
HCB	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	100%
gamma-BHC	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
beta-BHC	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	108%
Heptachlor	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	97%
delta-BHC	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Aldrin	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	102%
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	107%
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1    <0.1	[NR]	[NR]
pp-DDE	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1    <0.1	LCS-1	104%
Dieldrin	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1    <0.1	LCS-1	110%
Endrin	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	104%
pp-DDD	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	115%
Endosulfan II	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
pp-DDT	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Endosulfan Sulphate		0.1	Org-005	<0.1	103178-2	<0.1  <0.1	LCS-1	[NK] 106%
Methoxychlor	mg/kg	0.1	Org-005	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
-	mg/kg	0.1	_					
Surrogate TCMX	%		Org-005	76	103178-2	82  82  RPD:0	LCS-1	77%

		Clie	nt Referenc	e: E [⁄]	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PCBs in Soil						Base II Duplicate II % RPD		-
Date extracted	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-1	08/01/2014
Date analysed	-			08/01/2 014	103178-2	08/01/2014  08/01/2014	LCS-1	08/01/2014
Arochlor 1016	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	LCS-1	80%
Arochlor 1260	mg/kg	0.1	Org-006	<0.1	103178-2	<0.1  <0.1	[NR]	[NR]
Surrogate TCLMX	%		Org-006	76	103178-2	82  82  RPD:0	LCS-1	80%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil						Base II Duplicate II % RPD		
Date digested	-			09/01/2 014	103178-2	09/01/2014  09/01/2014	LCS-3	09/01/2014
Date analysed	-			09/01/2 014	103178-2	09/01/2014  09/01/2014	LCS-3	09/01/2014
Arsenic	mg/kg	4	Metals-020 ICP-AES	<4	103178-2	<4  <4	LCS-3	101%
Cadmium	mg/kg	0.4	Metals-020 ICP-AES	<0.4	103178-2	<0.4  <0.4	LCS-3	110%
Chromium	mg/kg	1	Metals-020 ICP-AES	<1	103178-2	5  6  RPD:18	LCS-3	106%
Copper	mg/kg	1	Metals-020 ICP-AES	<1	103178-2	33  38  RPD:14	LCS-3	104%
Lead	mg/kg	1	Metals-020 ICP-AES	<1	103178-2	220  340  RPD:43	LCS-3	104%
Mercury	mg/kg	0.1	Metals-021 CV-AAS	<0.1	103178-2	<0.1  <0.1	LCS-3	99%
Nickel	mg/kg	1	Metals-020 ICP-AES	<1	103178-2	3  3  RPD:0	LCS-3	105%
Zinc	mg/kg	1	Metals-020 ICP-AES	<1	103178-2	10  15  RPD:40	LCS-3	104%

Client Reference:

QUALITY CONTROL Moisture	UNITS	PQL	METHOD	Blank				
Date prepared	-			[NT]				
Date analysed	_			[NT]				
Moisture	%	0.1	Inorg-008	[NT]				
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	1			
Asbestos ID - soils				Dianit				
Date analysed	-			[NT]		1	1	-
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
ESP/CEC						Base II Duplicate II % RPD		
Exchangeable Ca	meq/100 g	0.1	Metals-009	<0.1	103178-1	27  27  RPD:0	LCS-1	110%
ExchangeableK	meq/100 g	0.1	Metals-009	<0.1	103178-1	0.3  0.3  RPD:0	LCS-1	108%
ExchangeableMg	meq/100 g	0.1	Metals-009	<0.1	103178-1	0.44  0.38  RPD:15	LCS-1	103%
ExchangeableNa	meq/100 g	0.1	Metals-009	<0.1	103178-1	0.24  0.19  RPD:23	LCS-1	100%
Cation Exchange Capacity	meq/100 g	1	Metals-009	<1.0	103178-1	28  28  RPD:0	[NR]	[NR]
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
Miscellaneous Inorg - soil						Base II Duplicate II % RPD		
Date prepared	-			[NT]	103178-1	08/01/2014  08/01/2014	LCS-1	08/01/2014
Date analysed	-			[NT]	103178-1	08/01/2014  08/01/2014	LCS-1	08/01/2014
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	103178-1	9.0  9.0  RPD:0	LCS-1	101%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
VOCs in water						Base II Duplicate II % RPD		
Date extracted	-			07/01/2 014	103178-27	07/01/2014  07/01/2014	LCS-W1	07/01/2014
Date analysed	-			07/01/2 014	103178-27	07/01/2014  07/01/2014	LCS-W1	07/01/2014
Dichlorodifluoromethane	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
Chloromethane	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
Vinyl Chloride	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
Bromomethane	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
Chloroethane	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
Trichlorofluoromethane	µg/L	10	Org-013	<10	103178-27	<10  <10	[NR]	[NR]
1,1-Dichloroethene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
Trans-1,2- dichloroethene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
1,1-dichloroethane	μg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	88%
Cis-1,2-dichloroethene	μg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
Bromochloromethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
Chloroform	μg/L	1	Org-013	<1	103178-27	1    <1	LCS-W1	85%
2,2-dichloropropane	μg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
1,2-dichloroethane	μg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	79%
1,1,1-trichloroethane	μg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	83%

Client Reference: E13017BEL											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
VOCs in water						Base II Duplicate II % RPD					
1,1-dichloropropene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Cyclohexane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Carbon tetrachloride	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Dibromomethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2-dichloropropane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Trichloroethene	µg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	99%			
Bromodichloromethane	µg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	82%			
trans-1,3- dichloropropene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
cis-1,3-dichloropropene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,1,2-trichloroethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Toluene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,3-dichloropropane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Dibromochloromethane	µg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	82%			
1,2-dibromoethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Tetrachloroethene	µg/L	1	Org-013	<1	103178-27	<1  <1	LCS-W1	78%			
1,1,1,2- tetrachloroethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Chlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Ethylbenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Bromoform	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
m+p-xylene	µg/L	2	Org-013	~2	103178-27	<2  <2	[NR]	[NR]			
Styrene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,1,2,2- tetrachloroethane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
o-xylene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2,3-trichloropropane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
lsopropylbenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Bromobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
n-propyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
2-chlorotoluene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
4-chlorotoluene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,3,5-trimethyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Tert-butyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2,4-trimethyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,3-dichlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Sec-butyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,4-dichlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
4-isopropyl toluene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2-dichlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
n-butyl benzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2-dibromo-3- chloropropane	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
1,2,4-trichlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			
Hexachlorobutadiene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]			

		Clie	ent Referenc	e: E	13017BEL			
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results Base II Duplicate II %RPD	Spike Sm#	Spike % Recovery
						•		
1,2,3-trichlorobenzene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-013	111	103178-27	128  103  RPD:22	LCS-W1	79%
Surrogate toluene-d8	%		Org-013	94	103178-27	91    76    RPD: 18	LCS-W1	84%
Surrogate 4-BFB	%		Org-013	76	103178-27	76  74  RPD:3	LCS-W1	96%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
vTRH(C6-C10)/BTEXNin Water						Base II Duplicate II % RPD		
Date extracted	-			07/01/2 014	103178-27	07/01/2014  07/01/2014	LCS-W1	07/01/2014
Date analysed	-			07/01/2 014	103178-27	07/01/2014  07/01/2014	LCS-W1	07/01/2014
TRHC6 - C9	µg/L	10	Org-016	<10	103178-27	<10  <10	LCS-W1	104%
TRHC6 - C10	µg/L	10	Org-016	<10	103178-27	<10  <10	LCS-W1	104%
Benzene	µg/L	1	Org-016	<1	103178-27	<1  <1	LCS-W1	98%
Toluene	µg/L	1	Org-016	<1	103178-27	<1  <1	LCS-W1	101%
Ethylbenzene	µg/L	1	Org-016	<1	103178-27	<1  <1	LCS-W1	105%
m+p-xylene	µg/L	2	Org-016	<2	103178-27	<2  <2	LCS-W1	108%
o-xylene	µg/L	1	Org-016	<1	103178-27	<1  <1	LCS-W1	109%
Naphthalene	µg/L	1	Org-013	<1	103178-27	<1  <1	[NR]	[NR]
<i>Surrogate</i> Dibromofluoromethane	%		Org-016	111	103178-27	128  103  RPD:22	LCS-W1	114%
Surrogate toluene-d8	%		Org-016	94	103178-27	91    76    RPD: 18	LCS-W1	95%
Surrogate 4-BFB	%		Org-016	76	103178-27	76  74  RPD:3	LCS-W1	107%
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
svTRH(C10-C40)in Water						Base II Duplicate II % RPD		
Date extracted	-			08/01/2 014	[NT]	[NT]	LCS-W1	08/01/2014
Date analysed	-			08/01/2 014	[NT]	[NT]	LCS-W1	08/01/2014
TRHC 10 - C14	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	111%
TRHC 15 - C28	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRHC29 - C36	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	116%
TRH>C10 - C16	µg/L	50	Org-003	<50	[NT]	[NT]	LCS-W1	111%
TRH>C16 - C34	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	101%
TRH>C34 - C40	µg/L	100	Org-003	<100	[NT]	[NT]	LCS-W1	116%
Surrogate o-Terphenyl	%		Org-003	93	[NT]	[NT]	LCS-W1	99%

		Clie	nt Reference	ce: E	13017BEL			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery
PAHs in Water						Base II Duplicate II % RPD		
Date extracted	-			08/01/2 014	[NT]	[NT]	LCS-W1	08/01/2014
Date analysed	-			09/01/2 014	[NT]	[NT]	LCS-W1	09/01/2014
Naphthalene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	95%
Acenaphthylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Acenaphthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluorene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	97%
Phenanthrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	101%
Anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Fluoranthene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	97%
Pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	103%
Benzo(a)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Chrysene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	100%
Benzo(b+k)fluoranthene	µg/L	2	Org-012 subset	2	[NT]	[NT]	[NR]	[NR]
Benzo(a)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	LCS-W1	103%
Indeno(1,2,3-c,d)pyrene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Dibenzo(a,h)anthracene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
Benzo(g,h,i)perylene	µg/L	1	Org-012 subset	<1	[NT]	[NT]	[NR]	[NR]
<i>Surrogate p</i> -Terphenyl- d14	%		Org-012 subset	92	[NT]	[NT]	LCS-W1	94%

Client Reference: E13

Client Reference: E13017BEL											
QUALITY CONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
HM in water - dissolved						Base II Duplicate II %RPD					
Date prepared	-			08/01/2 014	103178-26	08/01/2014  08/01/2014	LCS-W1	08/01/2014			
Date analysed	-			08/01/2 014	103178-26	08/01/2014  08/01/2014	LCS-W1	08/01/2014			
Arsenic-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	1  1  RPD:0	LCS-W1	106%			
Cadmium-Dissolved	µg/L	0.1	Metals-022 ICP-MS	<0.1	103178-26	5.0  5.8  RPD: 15	LCS-W1	104%			
Chromium-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	1    2    RPD: 67	LCS-W1	99%			
Copper-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	2  2  RPD:0	LCS-W1	102%			
Lead-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	<1  <1	LCS-W1	108%			
Mercury-Dissolved	µg/L	0.05	Metals-021 CV-AAS	<0.05	103178-26	<0.05  <0.05	LCS-W1	96%			
Nickel-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	200  230  RPD:14	LCS-W1	102%			
Zinc-Dissolved	µg/L	1	Metals-022 ICP-MS	<1	103178-26	190  220  RPD:15	LCS-W1	102%			
QUALITYCONTROL	UNITS	PQL	METHOD	Blank	Duplicate Sm#	Duplicate results	Spike Sm#	Spike % Recovery			
Miscellaneous Inorganics						Base II Duplicate II %RPD		,			
Date prepared	-			09/01/2 014	[NT]	[NT]	LCS-W1	08/01/2014			
Date analysed	-			014 09/01/2 014	[NT]	[TN]	LCS-W1	08/01/2014			
pН	pHUnits		Inorg-001	[NT]	[NT]	[NT]	LCS-W1	101%			
Electrical Conductivity	μS/cm	1	Inorg-002	<1	[NT]	[NT]	LCS-W1	104%			
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]	[NT]	LCS-W1	85%			
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]	[NT]	LCS-W1	97%			
Hardness	mgCaCO 3/L	3		3.0	[NT]	[NT]	[NR]	[NR]			
Calcium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	106%			
Magnesium - Dissolved	mg/L	0.5	Metals-020 ICP-AES	<0.5	[NT]	[NT]	LCS-W1	104%			
QUALITYCONTROL		Б [	Dup.Sm#		Duplicate	Spike Sm#	Spike % Reco	very			
vTRH(C6-C10)/BTEXNin Soil				Base+[	Duplicate+%RP	D					
Date extracted	-	1	03178-18	08/01/2	014  08/01/201	4 103178-11	08/01/201	4			
Date analysed	-	1	03178-18		.014  08/01/201		08/01/201	4			
TRHC6 - C9	mg/kg		03178-18		<25  <25	103178-11	82%				
TRHC6 - C10	mg/kg	-	03178-18		<25  <25	103178-11	82%				
Benzene	mg/kg	-	03178-18		<0.2  <0.2	103178-11	83%				
Toluene	mg/kg	-	03178-18		<0.5  <0.5	103178-11	78%				
Ethylbenzene	mg/kg	-	03178-18		<1  <1	103178-11	77%				
m+p-xylene	mg/kg	-	03178-18		<2  <2	103178-11	76%				
	ing/k	2 1			· <u> </u>	100170-11	7070				

	1	Client Reference	ce: E13017BEL		
QUALITYCONTROL vTRH(C6-C10)/BTEXN in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
o-Xylene	mg/kg	103178-18	<1  <1	103178-11	86%
naphthalene	mg/kg	103178-18	<1  <1	103178-11	84%
Surrogate aaa- Trifluorotoluene	%	103178-18	96    102    RPD: 6	103178-11	102%
QUALITY CONTROL svTRH (C10-C40) in Soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Date analysed	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
TRHC10 - C14	mg/kg	103178-18	<50  <50	103178-11	111%
TRHC 15 - C28	mg/kg	103178-18	<100  <100	103178-11	101%
TRHC29 - C36	mg/kg	103178-18	<100  <100	103178-11	116%
TRH>C10-C16	mg/kg	103178-18	<50  <50	103178-11	111%
TRH>C16-C34	mg/kg	103178-18	<100  <100	103178-11	101%
TRH>C34-C40	mg/kg	103178-18	<100  <100	103178-11	116%
Surrogate o-Terphenyl	%	103178-18	93  93  RPD:0	103178-11	99%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PAHs in Soil					
Date extracted	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Date analysed	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Naphthalene	mg/kg	103178-18	<0.1  <0.1	103178-11	89%
Acenaphthylene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Acenaphthene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Fluorene	mg/kg	103178-18	<0.1  <0.1	103178-11	92%
Phenanthrene	mg/kg	103178-18	<0.1  <0.1	103178-11	95%
Anthracene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Fluoranthene	mg/kg	103178-18	<0.1  <0.1	103178-11	90%
Pyrene	mg/kg	103178-18	<0.1  <0.1	103178-11	95%
Benzo(a)anthracene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Chrysene	mg/kg	103178-18	<0.1  <0.1	103178-11	92%
Benzo(b+k)fluoranthene	mg/kg	103178-18	<0.2  <0.2	[NR]	[NR]
Benzo(a)pyrene	mg/kg	103178-18	<0.05  <0.05	103178-11	100%
Indeno(1,2,3-c,d)pyrene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Dibenzo(a,h)anthracene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Benzo(g,h,i)perylene	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Surrogate p-Terphenyl-d14	%	103178-18	96  94  RPD:2	103178-11	90%

		Client Referenc	e: E13017BEL		
QUALITY CONTROL Organochlorine Pesticides in soil	UNITS	Dup.Sm#	Duplicate Base + Duplicate + %RPD	Spike Sm#	Spike % Recovery
Date extracted	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Date analysed	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
HCB	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
alpha-BHC	mg/kg	103178-18	<0.1  <0.1	103178-11	101%
gamma-BHC	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
beta-BHC	mg/kg	103178-18	<0.1  <0.1	103178-11	108%
Heptachlor	mg/kg	103178-18	<0.1  <0.1	103178-11	95%
delta-BHC	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Aldrin	mg/kg	103178-18	<0.1  <0.1	103178-11	102%
Heptachlor Epoxide	mg/kg	103178-18	<0.1  <0.1	103178-11	107%
gamma-Chlordane	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
alpha-chlordane	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Endosulfan I	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
pp-DDE	mg/kg	103178-18	<0.1  <0.1	103178-11	103%
Dieldrin	mg/kg	103178-18	<0.1  <0.1	103178-11	109%
Endrin	mg/kg	103178-18	<0.1  <0.1	103178-11	99%
pp-DDD	mg/kg	103178-18	<0.1  <0.1	103178-11	116%
Endosulfan II	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
pp-DDT	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Endrin Aldehyde	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Endosulfan Sulphate	mg/kg	103178-18	<0.1  <0.1	103178-11	107%
Methoxychlor	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Surrogate TCMX	%	103178-18	82  84  RPD:2	103178-11	79%

		Client Reference	e: E13017BEL		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
PCBs in Soil			Base + Duplicate + %RPD		
Date extracted	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Date analysed	-	103178-18	08/01/2014  08/01/2014	103178-11	08/01/2014
Arochlor 1016	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Arochlor 1221	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Arochlor 1232	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Arochlor 1242	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Arochlor 1248	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Arochlor 1254	mg/kg	103178-18	<0.1  <0.1	103178-11	90%
Arochlor 1260	mg/kg	103178-18	<0.1  <0.1	[NR]	[NR]
Surrogate TCLMX	%	103178-18	82  84  RPD:2	103178-11	87%
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
Acid Extractable metals in soil			Base + Duplicate + % RPD		
Date digested		103178-18	09/01/2014  09/01/2014	103178-11	09/01/2014
Date analysed		103178-18	09/01/2014  09/01/2014	103178-11	09/01/2014
Arsenic	- ma/ka	103178-18	7  5  RPD:33	103178-11	91%
Cadmium	mg/kg	103178-18	<0.4  <0.4	103178-11	97%
Chromium	mg/kg	103178-18	<0.4    <0.4 11    12    RPD: 9	103178-11	97%
	mg/kg	103178-18		103178-11	
Copper	mg/kg		26  29  RPD:11		107%
Lead	mg/kg	103178-18	14  14  RPD:0	103178-11	95%
Mercury	mg/kg	103178-18	<0.1  <0.1	103178-11	75%
Nickel	mg/kg	103178-18	2  2  RPD:0	103178-11	92%
	mg/kg	103178-18	24  26  RPD:8	103178-11	96%
QUALITY CONTROL ESP/CEC	UNITS	Dup. Sm#	Duplicate Base + Duplicate + %RPD		
Exchangeable Ca	meq/100 g	103178-14	33  31  RPD:6		
ExchangeableK	meq/100 g	103178-14	1.2  1.2  RPD:0		
ExchangeableMg	meq/100 g	103178-14	2.3  2.3  RPD:0		
ExchangeableNa	meq/100 g	103178-14	0.62  0.61  RPD:2		
Cation Exchange Capacity	meq/100 g	103178-14	37    35    RPD: 6		

		Client Referenc	e: E13017BEL		
QUALITYCONTROL	UNITS	Dup.Sm#	Duplicate		
Miscellaneous Inorg - soil			Base + Duplicate + %RPD		
Date prepared	-	103178-14	08/01/2014  08/01/2014		
Date analysed	-	103178-14	08/01/2014  08/01/2014		
pH 1:5 soil:water	pH Units	103178-14	7.8  7.9  RPD:1		
QUALITY CONTROL	UNITS	Dup.Sm#	Duplicate	Spike Sm#	Spike % Recovery
HM in water - dissolved			Base + Duplicate + %RPD		
Date prepared	-	[NT]	[NT]	103178-27	08/01/2014
Date analysed	Date analysed -		[NT]	103178-27	08/01/2014
Arsenic-Dissolved	µg/L	[NT]	[NT]	103178-27	111%
Cadmium-Dissolved	µg/L	[NT]	[NT]	103178-27	97%
Chromium-Dissolved	µg/L	[NT]	[NT]	103178-27	92%
Copper-Dissolved	µg/L	[NT]	[NT]	103178-27	101%
Lead-Dissolved	µg/L	[NT]	[NT]	103178-27	94%
Mercury-Dissolved	µg/L	[NT]	[NT]	[NR]	[NR]
Nickel-Dissolved	µg/L	[NT]	[NT]	103178-27	92%
Zinc-Dissolved	µg/L	[NT]	[NT]	103178-27	#

# **Report Comments:**

Trace metals:# Percent recovery is not possible to report due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Asbestos ID was analysed by Approved Ide	entifier:	Paul Ching
Asbestos ID was authorised by Approved S	Signatory:	Paul Ching
INS: Insufficient sample for this test	PQL: Practical Quant	itation Limit

NT: Not tested NA: Test not required LCS: Laboratory Control Sample

# **Quality Control Definitions**

NA: Test not required

<: Less than

**Blank**: This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. **Duplicate**: This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

>: Greater than

**Matrix Spike** : A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

**RPD: Relative Percent Difference** 

LCS (Laboratory Control Sample) : This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

**Surrogate Spike:** Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

# Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is

generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable. Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics and 10-140% for SVOC and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

			ENVIROL	NVIR	OLA	ENVIROLAB SERVICES	RVI	CES	) No.	AB SERVICES	h: (02) 5	Chatswood NSW 2067 Ph: (02) 9910 6200	10					Envil	rolab
Client:	Geo-Environm	Geo-Environmental Engineering Pty Ltd	Pty Ltd	Client F	roject	<b>Client Project Name and Number</b>	muN br	ber:	1	4	120	36		Envi	rolab	<b>Envirolab Services</b>	ices		
Project Mgr	McCormack			Ш	E13017BEI	Ц		Dat	Date Received	ived.	-1-1	It.		12 As	hley s	st, Cha	tswoo	12 Ashley St, Chatswood, NSW, 2067	
Sampler:	Mccormack			PO No.:				1 me	te Peceived	erved;	1	8							
Address:	82 Bridge Street			Envirol	ab Sen	Envirolab Services Quote No.	ote No.	Temp:	no. Noo	JAmhiont	Í t	h		Phone	a: 02	Phone: 02 9910 6200	200		
	Lane Cove NSW 2066			Date re	sults re	Date results required:		361.1	shing; to	Profing: tce/loepack	×			Fax:	02	02 9910 6201	5201		
Email:	stephen@geoenvironmental.com.au	iental.com.au		Or choc	se: st	Or choose: standard / 1 day / 2 day / 3 day act Broke gan	1 day	2 day	/ 3 da	Jact/Bro	NR BAN	alle		E-mail:	I: ah	e@en	virolal	ahie@envirolabservices.com.au	au
Phone:	0431 480 980			Note: Inform lab applies	orm lab i	in advance if urgent turnaround is required	if urgent	turnaroui	nd is req.	uired -		ns	surcharge	Conta	ct: Ai	Contact: Aileen Hie	ē		
	Sample information	formation								<b>Tests Required</b>	tequire	P						Comments	tents
Envirolab Sample ID	Client Sam	Date sampled	Type of sample	(8 bf2) sløføM	тен/втех	Hq	Combination 3	Combination 5	e2 noitenidmo2	sHAq	OCP/PCB	Combination 1 MG3N	ХЭТВ	втех / (voi ткн	CEC	EC EC	de/pH Resistivity	ା Provide as much information about the sample as you can	as much about the you can
1	SM060114-80	6/01/2014	soil				1								-	+			ľ
2	SM060114-81	6/01/2014	soil				-								-	1	-		
3	SM060114-82	6/01/2014	soil				1									-	-		
Ч	SM060114-83	6/01/2014	soil	1											-		-		
2	SM060114-84	6/01/2014	soil				1								1		-		
9	R2	6/01/2014	water	1			-						1			$\vdash$	-		
5	SM060114-86	6/01/2014	soil				1		_						1	$\vdash$	-		
vo	SM060114-87	6/01/2014	soil	1		1					1				1		-		
5	SM060114-88	6/01/2014	soil														-		
0	SM060114-89	6/01/2014	soil	1	1	1									1				
h	SM060114-90	6/01/2014	soil			1				1					1		-		
12	SM060114-92	6/01/2014	soil	1		1									1		$\vdash$		
51	SM060114-93	6/01/2014	soil			1	1								1				
M	SM060114-94	6/01/2014	soil	1		1									-				
11	SM060114-96	6/01/2014	soil			1	1								-	-	-		
Relinquishe	Relinquished by (company):			Received by		company)	:()	E						Sample	ss Rece	ived: Co	Nol or A	Samples Received: Cool or Ambient (circle one)	
Print Name:	: S. Mccormack	Y		Print Name:	ame:		D'E	250						Tempe	rature	Temperature Recieved at: 4-2	d at: H	· 2 (if applicable)	ole)
Date & Time:	ä	07-Jan-14		Date & Time:	Time:		T	- 1	110	5				Transp	orted t	y: Hand	d delive	Transported by: Hand delivered / courier	
Ciandenner								ł					ſ					)	

Form: 302 - Chain of Custody-Client, Issued 14/02/08, Version 3, Page 1 of 1.

			CHAIN OF CU	OFO		10	STODY	1	Client	Ľ								Entredah
				ENVIROLA	LAB	SER	<b>AB SERVICES</b>	S					1					LINNINGU
Client:		Geo-Environmental Engineering Pty Ltd	Pty Ltd	<b>Client Project</b>	ect Nan	ne and	Name and Number:						Env	irola	<b>Envirolab Services</b>	vices		
Project Mgr	r McCormack			E13(	E13017BEL								12 A	shley	St, Ch	atswo	od, NS	12 Ashley St, Chatswood, NSW, 2067
Sampler:	Mccormack			PO No.:														
Address:	82 Bridge Street			Envirolab Services Quote No. :	Services	Quote	No. :						Phoi	1e: 02	Phone: 02 9910 6200	6200		
	Lane Cove NSW 2066			Date results required:	ts requi	red:							Fax:	0	02 9910 6201	6201		
Email:	stephen@geoenvironmental.com.au	ental.com.au		Or choose: standard / 1 day / 2 day / 3 day	standa	1 / pu	day / 2	day / 3	day	Sd	5 days		Ë	ail: al	nie@ei	Ivirol	abservi	E-mail: ahie@envirolabservices.com.au
Phone:	0431 480 980			Note: Inform lab in advance if urgent turnaround is required applies	lab in adv	ance if u	gent turn	around is	required			surcharge		act: /	Contact: Aileen Hie	Hie		
	Sample information	ormation							Tes	Tests Required	ired							Comments
Envirolab Sample ID	Client Sample ID	Date sampled	Type of sample	Metals (Std 8) TRH/BTEX	Hq	E noitenidmoD	s£ noitsnidmoD	Combination 5	se noitenidmoD	OCP/PCB		BTEX	нят юv) \ хэтв	CEC	EC	ssaubrad	=. chloride / pH =:	Provide as much information about the sample as you can
91	SM060114-97	6/01/2014	soil						-	-	-	-			T	T	-	
()	SM060114-98	6/01/2014	soil							-	-			-		T		
18	SM060114-99	6/01/2014	soil		-				-	-				1		T	-	
61	SM060114-100	6/01/2014	soil	1						-	$\vdash$	-		-			-	
3	trip blank2	6/01/2014	soil						-				-				$\left  \right $	
7	trip psike 2	6/01/2014	soil									1	1				-	
ļ	R2	6/01/2014	water	1					-		_	1						
22	SM060114-101	6/01/2014	water			1						1			-	1	1	
22	SM060114-102	6/01/2014	water			1						1	-					
24	SM060114-103	6/01/2014	water			1				_		1			1	1	1	
52	SM060114-104	6/01/2014	water			-						1						
26	SM060114-105	6/01/2014	water			1				-		1						
62	SM060114-106	6/01/2014	water		_	1						1				F		
28	SM060114-107	6/01/2014	water			1						-			-	1	1	
29	trip spike	6/01/2014	water													T	$\vdash$	
30.	trip blank	6/01/2014	water										-			T		
31	21-411090HS		Sit	のこれ	oxo	3	3		-	-	-			×	3	3	20.	1/1
Relinquishe	Relinquished by (company):			Received by (company):	oy (com	pany):	P	SZ					Samp	les Rec	eived:	Cool or	Ambient	Samples Received: Cool or Ambient (circle one)
Print Name:	S. Mccormack			Print Name:	.:	0	SUD	H					Temp	eratun	Temperature Recieved at:	ed at:	4.2	4. 2 (if applicable)
Date & Time:	ö	07-Jan-14		Date & Time:	ie:	1	1-1-1	1-1	1ar	0			Trans	ported	by: Ha	nd deli	Transported by: Hand delivered / courier	ourier
Signature:				Signature.	)	Yr.	a	ľ					_					Pace No. 7 of 7



Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 18217

NATA

WORLD RECOGNISED

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Environmental Engineering Pty Ltd 82 Bridge St Lane Cove NSW 2066

Attention:

Stephen McCormack

Report Client Reference Received Date **404022-S** E13017BEL Dec 19, 2013

Client Sample ID			SM161213-48	SM171213-73	SM171213-88
Sample Matrix			Soil	Soil	Soil
Eurofins   mgt Sample No.			S13-De17122	S13-De17123	S13-De17124
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM					
TRH C6-C9	20	mg/kg	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	-	< 20
TRH C15-C28	50	mg/kg	< 50	-	< 50
TRH C29-C36	50	mg/kg	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	-	< 50
BTEX					
Benzene	0.1	mg/kg	< 0.1	-	< 0.1
Toluene	0.1	mg/kg	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	-	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	-	< 0.3
4-Bromofluorobenzene (surr.)	1	%	103	-	100
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-	< 0.5
TRH C6-C10	20	mg/kg	< 20	-	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-	< 20
TRH >C10-C16	50	mg/kg	< 50	-	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-	< 50
TRH >C16-C34	100	mg/kg	< 100	-	< 100
TRH >C34-C40	100	mg/kg	< 100	-	< 100
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	0.5	mg/kg	< 0.5	-	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	-	< 0.5
Anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5
Chrysene	0.5	mg/kg	< 0.5	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	-	< 0.5
Fluorene	0.5	mg/kg	< 0.5	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	-	< 0.5



Client Sample ID			SM161213-48	SM171213-73	SM171213-88
Sample Matrix			Soil	Soil	Soil
· ·					
Eurofins   mgt Sample No.			S13-De17122	S13-De17123	S13-De17124
Date Sampled			Not Provided	Not Provided	Not Provided
Test/Reference	LOR	Unit			-
Polycyclic Aromatic Hydrocarbons	1	-			
Phenanthrene	0.5	mg/kg	< 0.5	-	< 0.5
Pyrene	0.5	mg/kg	< 0.5	-	< 0.5
Total PAH	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	-	< 0.5
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	-	0.6
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	1.2	-	1.2
2-Fluorobiphenyl (surr.)	1	%	97	-	95
p-Terphenyl-d14 (surr.)	1	%	107	-	104
Organochlorine Pesticides					
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1
4.4'-DDD	0.05	mg/kg	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	< 0.05
a-BHC	0.05	mg/kg	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	< 0.05
b-BHC	0.05	mg/kg	-	-	< 0.05
d-BHC	0.05	mg/kg	-	-	< 0.05
Dieldrin	0.05	mg/kg	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	< 0.05
Endrin aldehyde	0.05	mg/kg	-	-	< 0.05
Endrin ketone	0.05	mg/kg	-	-	< 0.05
g-BHC (Lindane)	0.05	mg/kg	-	-	< 0.05
Heptachlor	0.05	mg/kg	-	-	< 0.05
Heptachlor epoxide	0.05	mg/kg	-	-	< 0.05
Hexachlorobenzene	0.05	mg/kg	-	-	< 0.05
Methoxychlor	0.2	mg/kg	-	-	< 0.2
Toxaphene	1	mg/kg	-	-	< 1
Dibutylchlorendate (surr.)	1	%	-	-	106
Tetrachloro-m-xylene (surr.)	1	%	-	-	101
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	0.5	mg/kg	-	-	< 0.5
Aroclor-1232	0.5	mg/kg	-	-	< 0.5
Aroclor-1242	0.5	mg/kg	-	-	< 0.5
Aroclor-1248	0.5	mg/kg	-	-	< 0.5
Aroclor-1254	0.5	mg/kg	-	-	< 0.5
Aroclor-1260	0.5	mg/kg	-	-	< 0.5
Total PCB	0.5	mg/kg	-	-	< 0.5
Dibutylchlorendate (surr.)	1	%	-	-	106
Heavy Metals					
Arsenic	2	mg/kg	3.5	4.0	5.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	< 5	24	< 5
Copper	5	mg/kg	< 5	< 5	< 5
Lead	5	mg/kg	39	230	< 5
Mercury	0.05	mg/kg	< 0.05	0.07	< 0.05
Nickel	5	mg/kg	< 5	< 5	< 5
Zinc	5	mg/kg	89	39	< 5



Client Sample ID Sample Matrix Eurofins   mgt Sample No. Date Sampled Test/Reference	LOR	Unit	SM161213-48 Soil S13-De17122 Not Provided	SM171213-73 Soil S13-De17123 Not Provided	SM171213-88 Soil S13-De17124 Not Provided
% Moisture	0.1	%	4.6	16	18



# Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	Dec 23, 2013	14 Day
- Method: E004 Petroleum Hydrocarbons (TPH)			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	Dec 23, 2013	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Sydney	Dec 23, 2013	14 Day
- Method: E029/E016 BTEX			
Polycyclic Aromatic Hydrocarbons	Sydney	Dec 21, 2013	14 Day
- Method: E007 Polyaromatic Hydrocarbons (PAH)			
Organochlorine Pesticides	Sydney	Dec 21, 2013	14 Day
- Method: E013 Organochlorine Pesticides (OC)			
Polychlorinated Biphenyls (PCB)	Sydney	Dec 21, 2013	28 Day
- Method: E013 Polychlorinated Biphenyls (PCB)			
Metals M8	Sydney	Dec 21, 2013	28 Day
- Method: E022 Acid Extractable metals in Soils & E026 Mercury			
% Moisture	Sydney	Dec 21, 2013	28 Day
- Method: E005 Moisture Content			



ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au

Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 **Sydney** Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Na Address: Client Job No	82 Bridg Lane Co NSW 20	ove 166	neering P/L			R	order epor hone ax:	t #:		-	022 9592 0 9519 9	-	Received: Due: Priority: Contact Name:	Dec 18, 2013 12:00 AM Dec 30, 2013 5 Day Stephen McCormack
													Eurofins	mgt Client Manager: Jean Heng
		Sample Detail			% Moisture	Polycyclic Aromatic Hydrocarbons	Organochlorine Pesticides	Metals M8	BTEX	Polychlorinated Biphenyls (PCB)	Total Recoverable Hydrocarbons			
Laboratory wh	ere analysis is c	onducted												
Melbourne Lab	oratory - NATA	Site # 1254 & 14	271											
Sydney Labora	atory - NATA Site	e # 18217			Х	Х	Х	Х	Х	Х	Х			
Brisbane Labo	ratory - NATA S	ite # 20794												
External Labor	ratory	1	T	1										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID										
SM161213-48	Not Provided		Soil	S13-De17122	Х	Х		Х	Х		Х			
SM171213-73	Not Provided		Soil	S13-De17123	Х			Х						
SM171213-88	Not Provided		Soil	S13-De17124	Х	Х	Х	Х	Х	Х	X			



### Eurofins | mgt Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

## UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre
ug/l: micrograms per litre	ppm: Parts per million
ppb: Parts per billion	%: Percentage
org/100ml: Organisms per 100 millilitres	NTU: Units
MPN/100ml : Most Probable Number of organisms per 100 millilitres	

#### TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

#### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

 $Surrogate \ Recoveries: Recoveries \ must \ lie \ between \ 50-150\% \ - \ Phenols \ 20-130\%.$ 

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



**Quality Control Results** 

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank		1 1			
Total Recoverable Hydrocarbons - 1999 NEPM	Fractions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank		1 I			
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank		1			
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	iiig/ikg		100	1 455	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank				1 435	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC		< 0.05	0.05	Pass	
d-BHC Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg mg/kg	< 0.05	0.05	Pass	



Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endosulfan sulphate	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Endrin aldehyde	mg/kg	< 0.05	0.05	Pass	
Endrin ketone	mg/kg	< 0.05	0.05	Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
Polychlorinated Biphenyls (PCB)					
Aroclor-1016	mg/kg	< 0.5	0.5	Pass	
Aroclor-1232	mg/kg	< 0.5	0.5	Pass	
Aroclor-1242	mg/kg	< 0.5	0.5	Pass	
Aroclor-1248	mg/kg	< 0.5	0.5	Pass	
Aroclor-1254	mg/kg	< 0.5	0.5	Pass	
Aroclor-1260	mg/kg	< 0.5	0.5	Pass	
Total PCB	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.05	0.05	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	5				
TRH C6-C9	%	105	70-130	Pass	
TRH C10-C14	%	82	70-130	Pass	
LCS - % Recovery					
BTEX					
Benzene	%	101	70-130	Pass	
Toluene	%	95	70-130	Pass	
Ethylbenzene	%	91	70-130	Pass	
m&p-Xylenes	%	95	70-130	Pass	
o-Xylene	%	93	70-130	Pass	
Xylenes - Total	%	94	70-130	Pass	
LCS - % Recovery		•			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	5				
Naphthalene	%	76	70-130	Pass	
TRH C6-C10	%	99	70-130	Pass	
TRH >C10-C16	%	89	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	108	70-130	Pass	
Acenaphthylene	%	100	70-130	Pass	
Anthracene	%	109	70-130	Pass	
Benz(a)anthracene	%	111	70-130	Pass	
	70	<u> </u>			



Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Benzo(b&j)fluoranthene			%	101		70-130	Pass	
Benzo(g.h.i)perylene			%	97		70-130	Pass	
Benzo(k)fluoranthene			%	113		70-130	Pass	
Chrysene			%	106		70-130	Pass	
Dibenz(a.h)anthracene			%	108		70-130	Pass	
Fluoranthene			%	105		70-130	Pass	
Fluorene			%	121		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	105		70-130	Pass	
Naphthalene			%	102		70-130	Pass	
Phenanthrene			%	101		70-130	Pass	
Pyrene			%	103		70-130	Pass	
LCS - % Recovery			/0	103		70-130	газэ	
Organochlorine Pesticides			0/	407		70.400	Dese	
Chlordanes - Total			%	127		70-130	Pass	
4.4'-DDD			%	121		70-130	Pass	
4.4'-DDE			%	127		70-130	Pass	
4.4'-DDT			%	119		70-130	Pass	
a-BHC			%	129		70-130	Pass	
Aldrin			%	129		70-130	Pass	
b-BHC			%	120		70-130	Pass	
d-BHC			%	129		70-130	Pass	
Dieldrin			%	129		70-130	Pass	
Endosulfan I			%	128		70-130	Pass	
Endosulfan II			%	128		70-130	Pass	
Endosulfan sulphate			%	124		70-130	Pass	
Endrin			%	125		70-130	Pass	
Endrin aldehyde			%	130		70-130	Pass	
Endrin ketone			%	128		70-130	Pass	
g-BHC (Lindane)			%	127		70-130	Pass	
Heptachlor			%	117		70-130	Pass	
Heptachlor epoxide			%	128		70-130	Pass	
Hexachlorobenzene			%	101		70-130	Pass	
Methoxychlor			%	117		70-130	Pass	
LCS - % Recovery			/0			10 100	1 400	
Polychlorinated Biphenyls (PCB)								
Aroclor-1260			%	106		70-130	Pass	
LCS - % Recovery			/0	100		70-130	газэ	
Heavy Metals			0/	100		70.400	Dess	
Arsenic			%	106		70-130	Pass	
Cadmium			%	95	<u> </u>	70-130	Pass	
Chromium			%	114		70-130	Pass	
Copper			%	110		70-130	Pass	
Lead			%	104		70-130	Pass	
Mercury			%	127		70-130	Pass	
Nickel			%	117		70-130	Pass	
Zinc	r		%	106		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	- 1999 NEPM Fracti	ons		Result 1				
TRH C6-C9	S13-De17361	NCP	%	96		70-130	Pass	
TRH C10-C14	S13-De18631	NCP	%	97		70-130	Pass	
Spike - % Recovery					· · ·			
BTEX				Result 1				
Benzene	S13-De17361	NCP	%	100	1 1	70-130	Pass	



Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Toluene	S13-De17361	NCP	%	93			70-130	Pass	
Ethylbenzene	S13-De17361	NCP	%	87			70-130	Pass	
m&p-Xylenes	S13-De17361	NCP	%	91			70-130	Pass	
o-Xylene	S13-De17361	NCP	%	90			70-130	Pass	
Xylenes - Total	S13-De17361	NCP	%	91			70-130	Pass	
Spike - % Recovery									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	S13-De17361	NCP	%	82			70-130	Pass	
TRH C6-C10	S13-De17361	NCP	%	92			70-130	Pass	
TRH >C10-C16	S13-De18631	NCP	%	105			70-130	Pass	
Spike - % Recovery		<u> </u>							
Polycyclic Aromatic Hydrocarbo	ns			Result 1					
Acenaphthene	B13-De16516	NCP	%	126			70-130	Pass	
Acenaphthylene	B13-De16516	NCP	%	110			70-130	Pass	
Anthracene	B13-De16516	NCP	%	120			70-130	Pass	
Benz(a)anthracene	B13-De16516	NCP	%	114			70-130	Pass	
Benzo(a)pyrene	B13-De16516	NCP	%	125			70-130	Pass	
Benzo(b&i)fluoranthene	B13-De16516	NCP	%	123			70-130	Pass	
Benzo(g.h.i)pervlene	B13-De16516	NCP	%	113			70-130	Pass	
Benzo(k)fluoranthene	B13-De16516	NCP	%	124			70-130	Pass	
	B13-De16516	NCP	%	124			70-130	Pass	
Chrysene									
Dibenz(a.h)anthracene	B13-De16516	NCP	%	125			70-130	Pass	
Fluoranthene	B13-De16516	NCP	%	115			70-130	Pass	
Fluorene	B13-De16516	NCP	%	117			70-130	Pass	
Indeno(1.2.3-cd)pyrene	B13-De16516	NCP	%	122			70-130	Pass	
Naphthalene	B13-De16516	NCP	%	119			70-130	Pass	
Phenanthrene	B13-De16516	NCP	%	115			70-130	Pass	
Pyrene	B13-De16516	NCP	%	117			70-130	Pass	
Spike - % Recovery				<b>_</b>					
Heavy Metals				Result 1				_	
Arsenic	S13-De18384	NCP	%	112			70-130	Pass	
Cadmium	S13-De18384	NCP	%	124			70-130	Pass	
Chromium	S13-De18384	NCP	%	120			70-130	Pass	
Copper	S13-De17695	NCP	%	123			70-130	Pass	
Lead	S13-De18384	NCP	%	97			70-130	Pass	
Mercury	S13-De18384	NCP	%	105			70-130	Pass	
Nickel	S13-De18384	NCP	%	104			70-130	Pass	
Zinc	S13-De17827	NCP	%	120			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	S13-De17361	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S13-De18631	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S13-De18631	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S13-De18631	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S13-De17361	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S13-De17361	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
	S13-De17361	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ellividenzene				+ • • • •		••			
Ethylbenzene m&p-Xylenes		NCP	ma/ka	< 0.2	< 0.2	<1	30%	Pass	
m&p-Xylenes o-Xylene	S13-De17361 S13-De17361	NCP NCP	mg/kg mg/kg	< 0.2 < 0.1	< 0.2 < 0.1	<1 <1	30% 30%	Pass Pass	



Duplicate					_				
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S13-De17361	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S13-De17361	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10 less BTEX (F1)	S13-De17361	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S13-De18631	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S13-De18631	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	S13-De18631	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	B13-De16516	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S13-De18384	NCP	mg/kg	5.5	5.6	2.0	30%	Pass	
Cadmium	S13-De18384	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S13-De18384	NCP	mg/kg	14	18	27	30%	Pass	
Copper	S13-De18384	NCP	mg/kg	18	19	8.0	30%	Pass	
Lead	S13-De18384	NCP	mg/kg	15	18	13	30%	Pass	
Mercury	S13-De18384	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Nickel	S13-De18384	NCP	mg/kg	9.3	6.7	32	30%	Fail	Q15
Zinc	S13-De18384	NCP	mg/kg	130	180	28	30%	Pass	



## Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

## **Qualifier Codes/Comments**

#### Code Description

	•
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins   mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

## Authorised By

Jean Heng	Client Services
James Norford	Senior Analyst-Metal (NSW)
Ryan Hamilton	Senior Analyst-Organic (NSW)
Ryan Hamilton	Senior Analyst-Volatile (NSW)

# Dr. Bob Symons Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

 *  Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

#404022.

404022

Chain Of Cu	istody Form		Unit 16 M LAN NSV Phor Fax: Cont	<b>F3</b> , Park F3, Park lars Roa E COVE V, Austra he: +61 2 +61 2 9 act: Bob	View E d 2066 alia 2 8215 420 291 9 Symor	Buildin 6222 77 es	g	om.au	1			ſ	1	ŋt	ENV		Page			ES 1
	Directions & Comme afe handling require				Metais (As, Cd, Cr, Cu, Pb, Ni, Zn Ho)		lytes				F	Alisan From: To Labo Project i	ratory:			ey -	iboratory of gineering Pty L		31 480 980) - -	
			1		ਲੰ		1						-	ī.	Container					
Report Number	Sample ID	Matrix			Metals (As, 7 Zn Hn)	TRH/BTEX	PAHs	OCP/PCB				Jar	Vial	125 mi plastic (blue)	200 ml glass (purple)	25mls plastic (purple)	1L (orange) Glass amber	1L Plastic (green)	OTHER	ТАТ
	SM161213-48	soil			1	1	1					1								
	SM171213-73	soil			1							1								
	SM171213-88	soil	+		1	1	1	1			+	1								
Relinquished By: Date & Time : Signature:	Stephen Mccormack 18/12/2013		Date	ived By: & Time : ature:	्ष	212		12	750-	pm	C F	Courier	Of Ship elivered		x	NOTES:	Samples 1 in the field jar. Can th	for the	red plastic	metals
For samples whic between internal l	h require transportati aboratories:	on		arting - ature:	1			e & Tir iperati					Upon Signat	receipt - ture:			Date & Tim Temperatu	ie:		



Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Geo-Environmental Engineering Pty Ltd 82 Bridge St Lane Cove NSW 2066



Attention:

Stephen McCormack

Report Client Reference Received Date **404830-S** E13017BEL Jan 07, 2014

Client Sample ID			SM060114-85	SM060114-91
Sample Matrix			Soil	Soil
Eurofins   mgt Sample No.			M14-Ja00590	M14-Ja00591
Date Sampled			Jan 06, 2014	Jan 06, 2014
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM		-		
TRH C6-C9	20	mg/kg	< 20	-
TRH C10-C14	20	mg/kg	< 20	-
TRH C15-C28	50	mg/kg	< 50	-
TRH C29-C36	50	mg/kg	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-
BTEX				
Benzene	0.1	mg/kg	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	82	-
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-
TRH C6-C10	20	mg/kg	< 20	-
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	-
TRH >C10-C16	50	mg/kg	< 50	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.5	mg/kg	< 0.5	-
Acenaphthylene	0.5	mg/kg	< 0.5	-
Anthracene	0.5	mg/kg	< 0.5	-
Benz(a)anthracene	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene	0.5	mg/kg	< 0.5	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	-
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	-
Chrysene	0.5	mg/kg	< 0.5	-
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	-
Fluoranthene	0.5	mg/kg	< 0.5	-
Fluorene	0.5	mg/kg	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	-



Client Sample ID Sample Matrix			SM060114-85 Soil	SM060114-91 Soil
Eurofins   mgt Sample No.			M14-Ja00590	M14-Ja00591
Date Sampled			Jan 06, 2014	Jan 06, 2014
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons	·			
Phenanthrene	0.5	mg/kg	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	-
Total PAH	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene TEQ (lower bound)*	0.5	mg/kg	< 0.5	-
Benzo(a)pyrene TEQ (medium bound)*	0.5	mg/kg	0.6	-
Benzo(a)pyrene TEQ (upper bound)*	0.5	mg/kg	1.2	-
2-Fluorobiphenyl (surr.)	1	%	97	-
p-Terphenyl-d14 (surr.)	1	%	63	-
Heavy Metals				
Arsenic	2	mg/kg	4.6	6.2
Cadmium	0.4	mg/kg	< 0.4	< 0.4
Chromium	5	mg/kg	15	6.1
Copper	5	mg/kg	23	18
Lead	5	mg/kg	31	14
Mercury	0.1	mg/kg	< 0.1	< 0.1
Nickel	5	mg/kg	< 5	< 5
Zinc	5	mg/kg	100	15
% Moisture	0.1	%	21	18



# Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported. A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Jan 13, 2014	14 Day
- Method: TRH C6-C36 - MGT 100A			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Jan 13, 2014	14 Day
- Method: LM-LTM-ORG2010			
BTEX	Melbourne	Jan 13, 2014	14 Day
- Method: USEPA 8260 - MGT 350A Monocyclic Aromatic Hydrocarbons and MGT 100A			
Polycyclic Aromatic Hydrocarbons	Melbourne	Jan 13, 2014	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Metals M8	Melbourne	Jan 13, 2014	28 Day
- Method: USEPA 6010/6020 Heavy Metals & USEPA 7470/71 Mercury			
% Moisture	Melbourne	Jan 13, 2014	14 Day
- Method: Method 102 - ANZECC - % Moisture			



Melbourne 3-5 Kingston Town Close Oakleigh VIC 3166 Phone : +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F6, Building F 16 Mars Road Lane Cove West NSW 2066 Phone : +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794

Company Nar Address:	82 Bridg Lane Co NSW 20	ve 66	eering P/L				Order No.: Report #: Phone: Fax:			404830 02 9592 0218 02 9519 9140	Received: Due: Priority: Contact Name:	Jan 7, 2014 9:15 AM Jan 14, 2014 5 Day Stephen McCormack
Client Job No	<b>b.:</b> E13017E	3EL									Eurofins	mgt Client Manager: Jean Heng
		Sample Detail			% Moisture	Polycyclic Aromatic Hydrocarbons	Metals M8	BTEX	Total Recoverable Hydrocarbons			
	ere analysis is c											
	oratory - NATA		271		X	Х	Х	Х	Х			
	tory - NATA Site							<u> </u>				
External Labor	ratory - NATA Si	te # 20/94										
Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
SM060114-85	Jan 06, 2014		Soil	M14-Ja00590	Х	Х	Х	Х	Х			
	Jan 06, 2014		Soil	M14-Ja00591	X		Х					

ABN - 50 005 085 521 e.mail : EnviroSales@eurofins.com.au web : www.eurofins.com.au



#### Eurofins | mgt Internal Quality Control Review and Glossary

#### General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual PQLs are matrix dependant. Quoted PQLs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

#### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Acknowledgment.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

## UNITS

mg/kg: milligrams per Kilogram	mg/I: milligrams per litre					
ug/l: micrograms per litre	ppm: Parts per million					
ppb: Parts per billion	%: Percentage					
org/100ml: Organisms per 100 millilitres	NTU: Units					
MPN/100mL: Most Probable Number of organisms per 100 millilitres						

#### TERMS

IERINIS	
Dry	Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
LOR	Limit of Reporting.
SPIKE	Addition of the analyte to the sample and reported as percentage recovery.
RPD	Relative Percent Difference between two Duplicate pieces of analysis.
LCS	Laboratory Control Sample - reported as percent recovery
CRM	Certified Reference Material - reported as percent recovery
Method Blank	In the case of solid samples these are performed on laboratory certified clean sands.
	In the case of water samples these are performed on de-ionised water.
Surr - Surrogate	The addition of a like compound to the analyte target and reported as percentage recovery.
Duplicate	A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
Batch Duplicate	A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.
Batch SPIKE	Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.
USEPA	United States Environmental Protection Agency
APHA	American Public Health Association
ASLP	Australian Standard Leaching Procedure (AS4439.3)
TCLP	Toxicity Characteristic Leaching Procedure
COC	Chain of Custody
SRA	Sample Receipt Advice
СР	Client Parent - QC was performed on samples pertaining to this report
NCP	Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within
TEQ	Toxic Equivalency Quotient

#### **QC - ACCEPTANCE CRITERIA**

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries : Recoveries must lie between 50-150% - Phenols 20-130%.

### QC DATA GENERAL COMMENTS

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxophene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxophene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Arochlor 1260 in Matrix Spikes and LCS's.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPD's are calculated from raw analytical data thus it is possible to have two sets of data.



**Quality Control Results** 

Test	Units	Result 1	Acceptan Limits	ce Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM I	Fractions				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank			· ·		
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH C6-C10 less BTEX (F1)	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons				$\overline{}$	
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				1 000	
Total Recoverable Hydrocarbons - 1999 NEPM I	Fractions				

Test			Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
TRH C6-C9			%	125		70-130	Pass	
TRH C10-C14			%	104		70-130	Pass	
LCS - % Recovery				<u> </u>				
BTEX								
Benzene			%	123		70-130	Pass	
Toluene			%	120		70-130	Pass	
Ethylbenzene			%	123		70-130	Pass	
m&p-Xylenes			%	118		70-130	Pass	
Xylenes - Total			%	118		70-130	Pass	
LCS - % Recovery					· · ·			
Total Recoverable Hydrocarbons - 20	13 NEPM Fract	tions						
TRH C6-C10			%	125		70-130	Pass	
TRH >C10-C16			%	105		70-130	Pass	
LCS - % Recovery					· · ·			
Polycyclic Aromatic Hydrocarbons								
Acenaphthene			%	103		70-130	Pass	
Acenaphthylene			%	109		70-130	Pass	
Anthracene			%	113		70-130	Pass	
Benz(a)anthracene			%	109		70-130	Pass	
Benzo(a)pyrene			%	103		70-130	Pass	
Benzo(b&j)fluoranthene			%	93		70-130	Pass	
Benzo(g.h.i)perylene			%	98		70-130	Pass	
Benzo(k)fluoranthene			%	101		70-130	Pass	
Chrysene			%	113		70-130	Pass	
Dibenz(a.h)anthracene			%	105		70-130	Pass	
Fluoranthene			%	98		70-130	Pass	
Fluorene				106		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	103		70-130	Pass	
Naphthalene			%	100		70-130	Pass	
Phenanthrene			%	112		70-130	Pass	
Pyrene			%	95		70-130	Pass	
LCS - % Recovery								
Heavy Metals								
Arsenic			%	80		80-120	Pass	
Cadmium			%	94		80-120	Pass	
Chromium			%	97		80-120	Pass	
Copper			%	101		80-120	Pass	
Lead			%	100		80-120	Pass	
Mercury			%	106		75-125	Pass	
Nickel			%	94		80-120	Pass	
Zinc			%	91		80-120	Pass	
Test L	ab Sample ID.	QA Source	Units	Result 1	A	cceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons - 19	99 NEPM Fract	tions		Result 1				
TRH C6-C9	M14-Ja01292	NCP	%	117		70-130	Pass	
Spike - % Recovery				1				
втех				Result 1				
Benzene	M14-Ja01292	NCP	%	95		70-130	Pass	
Toluene	M14-Ja01292	NCP	%	97		70-130	Pass	
	M14-Ja01292	NCP	%	85		70-130	Pass	
Ethylbenzene								
	M14-Ja01292	NCP	%	84		70-130	Pass	
m&p-Xylenes		NCP NCP	%	84 85		70-130 70-130	Pass Pass	

🛟 eurofins



Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
2013 NEPM Fract	ions		Result 1					
M14-Ja01292	NCP	%	117			70-130	Pass	
			1	1		-		
í	,		Result 1					
M14-Ja01907			102			70-130	Pass	
M14-Ja01907	NCP	%	109			70-130	Pass	
M14-Ja01907	NCP	%	108			70-130	Pass	
M14-Ja01907	NCP	%	101			70-130	Pass	
M14-Ja01907	NCP	%	109			70-130	Pass	
M14-Ja01907	NCP	%	91			70-130	Pass	
M14-Ja01907	NCP	%	103			70-130	Pass	
M14-Ja01907	NCP	%	103			70-130	Pass	
M14-Ja01907	NCP	%	104			70-130	Pass	
M14-Ja01907	NCP	%	112			70-130	Pass	
M14-Ja01907	NCP	%	86			70-130	Pass	
M14-Ja01907	NCP	%	106			70-130	Pass	
M14-Ja01907	NCP	%	106			70-130	Pass	
M14-Ja01907	NCP	%	98			70-130	Pass	
M14-Ja01907	NCP	%	109			70-130	Pass	
M14-Ja01907	NCP	%	89			70-130	Pass	
			Result 1					
M14-Ja01892	NCP	%	77			75-125	Pass	
M14-Ja00590	CP	%	81			75-125	Pass	
M14-Ja00590	CP	%	82			75-125	Pass	
M14-Ja00590	СР	%	85			75-125	Pass	
M14-Ja01892	NCP	%	116			75-125	Pass	
M14-Ja00590	СР		106			70-130	Pass	
M14-Ja00590	СР		76				Pass	
	NCP		89					
Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
	1 1			11				
1999 NEPM Fract	ions		Result 1	Result 2	RPD			
	1 1	ma/ka	< 20			30%	Pass	
			Result 1	Result 2	RPD			
M14-Ja01292	NCP	ma/ka		1 1		30%	Pass	
	1 1	00		1 1				
				1 1				
				1 1				
				1 1				
				1 1				
		iiig/itg	0.0	<u> </u>		0070	1 400	
2013 NEPM Eract	ions		Result 1	Result 2	RPD	1		
	1 1	ma/ka		1 1		30%	Pass	
				1 1				
M14-Ja01292	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
WITH 0001232		mynxy	~ 20	~ 20	~ 1		1 435	
			Result 1	Result 2	RPD			
, ,			- Robuit I	1		0.001		
M14- 1201907	NCP	ma/ka	-05	-05	~1	3(10/2	Doce	
M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M14-Ja01907 M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
M14-Ja01907		00		1				
	M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01907 M14-Ja01892 M14-Ja00590 M14-Ja00590 M14-Ja00590 M14-Ja00590 M14-Ja00590 M14-Ja01892 M14-Ja01892 M14-Ja01892 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292 M14-Ja01292	M14-Ja01907   NCP     M14-Ja01892   NCP     M14-Ja00590   CP     M14-Ja00590   CP     M14-Ja001892   NCP     M14-Ja01892   NCP     M14-Ja01292   NCP     M14-Ja01292   NCP     M14-Ja01292	M14-Ja01907 NCP %   M14-Ja01892 NCP %   M14-Ja01892 NCP %   M14-Ja00590 CP %   M14-Ja01892 NCP %   M14-Ja01892 NCP %   M14-Ja01292 NCP mg	Result 1     M14-Ja01907   NCP   %   102     M14-Ja01907   NCP   %   109     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   104     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   89     M14-Ja01907   NCP   %   89     M14-Ja01892   NCP   %   77     M14-Ja00590   CP   %   85     M14-Ja01892   NCP   %   89     Lab Sample ID	Result 1   Result 1     M14-Ja01907   NCP   %   102     M14-Ja01907   NCP   %   109     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   101     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   103     M14-Ja01907   NCP   %   104     M14-Ja01907   NCP   %   104     M14-Ja01907   NCP   %   104     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   106     M14-Ja01907   NCP   %   109     M14-Ja01907   NCP   %   109     M14-Ja01907   NCP   %   83     M14-Ja01907   NCP   %   81     M14-Ja01907   NCP   %   83	Result 1   Result 1     M14-Ja01907   NCP   %   102	Result 1   Result 1   70-130     M14-Ja01907   NCP   %   102   70-130     M14-Ja01907   NCP   %   109   70-130     M14-Ja01907   NCP   %   101   70-130     M14-Ja01907   NCP   %   101   70-130     M14-Ja01907   NCP   %   103   70-130     M14-Ja01907   NCP   %   104   70-130     M14-Ja01907   NCP   %   106   70-130     M14-Ja01907   NCP   %   106   70-130     M14-Ja01907   NCP   %   106   70-130     M14-Ja01907   NCP   %   108   70-130     M14-Ja01907   NCP   %   108   70-130     M14-Ja01907   NCP   %   <	Result 1   Result 1   70-130   Pass     M14-Ja01907   NCP   %   102   70-130   Pass     M14-Ja01907   NCP   %   108   70-130   Pass     M14-Ja01907   NCP   %   101   70-130   Pass     M14-Ja01907   NCP   %   101   70-130   Pass     M14-Ja01907   NCP   %   101   70-130   Pass     M14-Ja01907   NCP   %   103   70-130   Pass     M14-Ja01907   NCP   %   103   70-130   Pass     M14-Ja01907   NCP   %   103   70-130   Pass     M14-Ja01907   NCP   %   106   70-130   Pass     M14-Ja01907   NCP   %   106   70-130   Pass     M14-Ja01907   NCP   %   109   70-130   Pass     M14-Ja01907   NCP   %   89   75-125   Pass     M14-Ja01027   NCP   <



Duplicate									
Polycyclic Aromatic Hydrocar	bons	-		Result 1	Result 2	RPD			
Benzo(b&j)fluoranthene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M14-Ja01907	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals		-		Result 1	Result 2	RPD			
Arsenic	M14-Ja00590	CP	mg/kg	4.6	6.9	39	30%	Fail	Q15
Cadmium	M14-Ja00590	CP	mg/kg	< 0.4	0.5	26	30%	Pass	
Chromium	M14-Ja00590	CP	mg/kg	15	19	24	30%	Pass	
Copper	M14-Ja00590	CP	mg/kg	23	26	12	30%	Pass	
Lead	M14-Ja00590	CP	mg/kg	31	40	26	30%	Pass	
Mercury	M14-Ja00590	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M14-Ja00590	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Zinc	M14-Ja00590	CP	mg/kg	100	120	20	30%	Pass	



## Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Organic samples had Teflon liners	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

## **Qualifier Codes/Comments**

#### Code Description

	•
N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins   mgt's Acceptance Criteria as stipulated in SOP 05. Refer to Glossary Page of this report for further details

## Authorised By

Jean Heng	Client Services
Carroll Lee	Senior Analyst-Volatile (VIC)
Emily Rosenberg	Senior Analyst-Metal (VIC)
Stacey Jenkins	Senior Analyst-Organic (VIC)

lift here

Glenn Jackson Laboratory Manager Final report - this Report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Uncertainty data is available on request

Eurofines [mg] shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofines [mg] be liable for consequential damages including, but not limited to, isst produced instance to the endourced experiment shall not be reproduced except in full and relates only to the times tested. Unless indicated otherwise, the tests twen performed on the samples as received.

Chain Of Custody Form				MGT-LabMark (SYDNEY) Unit F3, Park View Building 16 Mars Road LANE COVE 2066 NSW, Australia Phone: +61 2 8215 6222 Fax: +61 2 9420 2977 Contact: Bob Symons Email: bob.symons@labmark.com.au									Page 1 of 1 1 404 830									
Special Directions & Comments (including safe handling requirements):					Metals (As, Cd, Cr, Cu, Pb, Ni, Zn, Ha)	Τ	lytes					All samples must be tranferred to the laboratory on Ice   From: Geo-Environmental Engineering Pty Ltd (Ph: 0431 480 980)   To Laboratory: MGT Sydney -   Project ID E13017BEL										
Report Number	Sample ID	Matrix			Metals (As, Cd, (	TRH/BTEX	PAHs	OCP/PCB				Jar	Vial	125 ml plastic (blue)	Container 200 ml glass (purple)	25mls plastic (purple)	1L (orange) Glass amber	1L Plastic (green)	OTHER	ТАТ		
	SM060114-85 SM060114-91	soil soil			1		1	-				1										
Relinquished By: Date & Time : Signature:	Stephen Mccormack 7/01/2014		Received By: Date & Time :			70U	We Exampt.				Method Of Shipment: Courier Hand Delivered			NOTES:		Samples 11, 12, 16 and						
For samples which require transportation between internal laboratories:				Departing - Date & Time Signature: Temperature							-	Postal Upon receipt - Signature:					in the field for the red plastic metals jar. Can these be filtered at lab Date & Time Temperature					